Geoscientific information

1831 record(s)
Type of resources
Available actions
Contact for the resource
Provided by
Representation types
Update frequencies
From 1 - 10 / 1831
  • The Quaternary deposits thickness dataset is a digital geological map across the bulk of the UK Continental Shelf (UKCS), for areas up to a water depth of 200m, which shows the thickness of the deposits over bedrock in three categories: <5m, 5-50m, and >50m Quaternary cover. These depth bands were picked because they represent the horizons that have impact on offshore infrastructure deployment. The map is derived from (unpublished) BGS 1:1000000 scale Quaternary digital geological mapping. The map was produced in 2014 in collaboration with, and co-funded by, The Crown Estate as part of a wider commissioned project to assess seabed geological constraints on engineering infrastructure across the UKCS. The data are held by the BGS as an ESRI ArcGIS Shapefile.

  • This project aims to build on and strengthen joint industry research programmes between Edinburgh, Doosan Power Systems in the UK and Sulzer ChemTech, a world leading manufacturer of separation processes equipment, with the objectives to move beyond current concepts for designing CO2 absorption columns for base-load operation, and towards new columns capable of meeting the requirements for flexible and highly dynamic operation of CCS power plants. It is an important research for the UK to ensure that conventional power plants fitted with CCS can become a source of dispatchable and low carbon energy to complement non-dispatchable renewable technologies such as wind or solar power. We propose to demonstrate the capabilities of novel ways to use solvent property instrumentation to significantly enhance the dynamic flexibility of the amine pilot plant at the UK CCS Research Centre Pilot Advanced Capture Testing facilities and to develop an underpinning understanding of the capabilities of state-of-the-art hardware, such as structured packing,liquid distributors, used in and around packed columns. Grant number: UKCCSRC-C2-214.

  • The RISCS (Research into Impacts and Safety in CO2 Storage) project assessed the potential environmental impacts of leakage from geological CO2 storage. Consideration was given to possible impacts on groundwater resources and on near surface ecosystems both onshore and offshore. The aim of the project was to assist storage site operators and regulators in assessing the potential impacts of leakage so that these could be considered during all phases of a storage project (project design, site characterisation, site operation, post-operation and site abandonment, and following transfer of liability back to the state). A secondary objective was to inform policy makers, politicians and the general public of the feasibility and long-term benefits and consequences of large-scale CO2 capture and storage (CCS) deployment. The Final Report can be downloaded from

  • The project will investigate the impacts of real flue gas and vent gas recycling on the combustion performance, emissions, ignition and flame stability of oxy-coal combustion by means of 250kW PACT facility testing and comprehensively validated CFD modelling, and to assess various flue gas recycling scenarios and the benefits of vent gas recycling by process simulation. Grant number: UKCCSRC-C1-27.

  • This is a blog (Update, 20.01.15) on the UKCCSRC Call 2 project, Quantifying Residual and Dissolution Trapping in the CO2CRC Otway Injection Site. Grant number: UKCCSRC-C2-204.

  • Regional property grids of the Utsira Sand based on mapping from 2D regional seismic lines and geophysical logs. Grids include: Top Utsira depth, Base Utsira depth, Utsira isopach, Utsira porosity, Utsira porosity effective thickness, Utsira proportion clean sand. 2 km grid spacing. SACS/SACS2 EU project.

  • This presentation on the UKCCSRC Call 1 project, UK Bio-CCS CAP, was presented at the Cranfield Biannual, 22.04.15. Grant number: UKCCSRC-C1-38.

  • SCCS is the largest Carbon Capture and Storage (CCS) research group in the UK. Our internationally renowned researchers provide connected strength across the full CCS chain. With our unique position SCCS is able to act as the conduit between academia, industry and government. We are able to provide a single point of coordination for all aspects of CCS research ranging from capture engineering and geoscience, to social perceptions and environmental impact, through to law and petroleum economics. SCCS has access to cutting-edge experimental and analytical facilities, expertise in field studies, modelling and simulation, key academic and research personnel to accelerate the development of CO2 transportation, capture and subsurface storage. We undertake strategic fundamental research and are also available for consultancy. In addition, we perform a key role in providing impartial advice to industry, the public sector, government agencies, and policy makers. Founded in 2005, SCCS is a partnership of the British Geological Survey, Heriot-Watt University, the University of Aberdeen, the University of Edinburgh and the University of Strathclyde working together with universities across Scotland. SCCS is funded by the Scottish Funding Council (SFC).

  • This dataset contains a catalogue of in-situ models for a fault activated by hydraulic fracturing in the Horn River Basin in July 2011. These were created as a part of Kettlety et al. (2019), wherein a Monte Carlo analysis was used to assess fault stability. See attached readme file for more details.

  • This poster on the UKCCSRC Call 1 project, North Sea aquifer mapping, was presented at the Cranfield Biannual, 22.04.15. Grant number: UKCCSRC-C1-30.