2014
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Scale
Resolution
-
This poster on the UKCCSRC Call 2 project Novel reductive rejuvenation approaches for degraded amine solutions from PCC in power plants was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-189. Aqueous amine scrubbing is currently considered to be the best available technology of carbon capture for both pulverised fuel and natural gas power plants. A major problem is the thermo-oxidative degradation of chemical amine solvents used, leading to a range of operational problems and the generation of large quantities of hazardous aqueous waste. However, no existing technologies are able to effectively deal with these problems particularly the handling of the toxic waste solvent streams. The conversion of the degraded amines back to usable solvents or saleable products has been regarded as a novel effective way for cost reduction.
-
This poster on the UKCCSRC Call 2 project, Process-performance indexed design of task-specific ionic liquids for post-combustion CO2 capture, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-199.
-
Groundwater temperature data from a shallow urban aquifer in Cardiff, Wales, UK between 2014-2018. Monitoring was undertaken as part of the ‘Cardiff Urban Geo-Observatory’ project . Boreholes are located within the urban area of the City of Cardiff, Wales, UK. The majority of temperature sensors were installed within boreholes that monitor a shallow Quaternary aged sand and gravel aquifer, however the made ground and the Triassic Mercia Mudstone also represented. Temperature sensors installed in 53 boreholes, between depths of 1.5m and 12- m below ground, with measurements every 30 minutes. The dataset comprises of just over 3.5 million temperature measurements. Monitoring was undertaken by the British Geological Survey and was designed to address knowledge gaps of subsurface urban heat island and it use for heat recovery and storage. Metadata Report http://nora.nerc.ac.uk/id/eprint/525332/
-
This poster on the UKCCSRC Call 2 project UK Demonstration of Enhanced Calcium Looping and first Global Demonstration of Advanced Doping Techniques was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-209. Calcium (carbonate) looping is a promising carbon capture technology, which has been successfully demonstrated using a slip stream from the exhaust of a large-scale power plant. CO2 is captured as CaCO3, and is then calcined to release a pure stream of CO2 suitable for storage. The main advantage of this cycle is that the exothermic CO2 capture stage takes place around 650°C and the heat released in the carbonation process can be used in a standard steam cycle. The aims of this project are: • To demonstrate the viability of enhanced calcium looping technologies for CCS using a pelletized spent lime stream. • To demonstrate the viability of calcium looping for the removal of CO2 from industrial gases (steel and iron industry and cement industry). • To explore the use of enhanced Ca looping using HBr as doping agent.
-
The data presented here contains the experimental X-ray CT dataset used for the paper "Characterising Drainage Multiphase flow in Heterogeneous Sandstones" by Jackson, Krevor et al (DOI 10.17605/OSF.IO/WCXNY), along with CMG IMEX modelling files. Core averaged pressure data and saturations, along with 1D saturation profiles are available in the supporting information fle. CT data is provided in the four '..._scans' folders. These contain reconstructed .dicom tomographs from X-ray CT imaging with native resolution 0.234375mm x 0.234375mm. The image thickness is 5mm for the Bentheimer and 3mm for the Bunter. Each files contains 3x scans for each fractional flow. Dry, water, brine equilibrated with CO2 (labelled SW), nitrogen and CO2 background scans are also provided, which are obtained after single phase core flooding. CMG IMEX .dat files contain the necesary input files for CMG IMEX to run the numerical core flood simulations (the low flow rate core flood examples are included). These have associated .inc files for the 3D capillary pressure scaling (the end point of the capillary pressure curve at irreducible water saturation) and the 3D porosity map. These are read into the simulation files on execution. The porosity and capillary pressure files are for the final, full length rock cores used to produce the main figures in the paper (Figure 5 onwards). The outputs from the CMG IMEX simulation can be read into the 3D results viewer where 3D saturations and pressure drops are obtained. This work was funded by the Natural Environment Research Council (Grant number: NE/N016173/1).
-
P-wave and S-wave tomographic models for the Northeast Africa region. They have been calculated using relative travel time tomography. For full details of method and models see the following papers: Civiero, C., Hammond, J. O. S., Goes, S., Fishwick, S., Ahmed, A., Ayele, A., Doubre, C., Goitom, B., Keir, D., Kendall, M., Leroy, S., Ogubzghi, G., Rumpker, G., Stuart, G. W. Multiple mantle upwellings beneath the Northern East-African rift system from relative P-wave traveltime tomography, Geochem. Geophys. Geosyst., doi:10.1002/2015GC005948 (2015) Civiero, C., Goes, S., Hammond, J. O. S., Fishwick, S., Ahmed, A., Ayele, A., Doubre, C., Goitom, B., Keir, D., Kendall, M., Leroy, S., Ogubzghi, G., Rumpker, G., Stuart, G. W. Small-scale thermal upwellings under the Northern East African rift from S-wave travel-time tomography, J. Geophs. Res. Doi:10.1002/2016JB013070 (2016). The geographical extent of the models is Latitude: 24.7S - 27.0N, Longitude: 25.4E - 57.2E, Depth: 0 - 900 km. See see hitcount files and papers for areas of reasonable resolution.
-
The data set encompasses the data generated through the 8 experimental runs on the 25 kWth calcium looping pilot plant at Cranfield University arranged into 8 functional Excel spreadsheets. The operational data are gathered by the acquisition with Labview software (the composition of the gas from the calciner and carbonator; temperatures of the electrical furnaces on the preheating lines and around the calciner; temperatures of the gas in the preheating lines and in the calciner) and Pico software (temperatures in the carbonator and lower loop seal and pressures in the calciner and in the carbonator). Moreover, the data from the experimental diary (inputs of gasses and solids into the rig) and the data from the post-processing of the extracted solids are included. All the data are combined into comprehensible charts that describe and explain the experimental runs together with the mass and energetic model of the system during steady state operations.
-
UKCCSRC Call 2 Project C2-189. The data, which was produced as a result of a UK CCSRC Call 2 funded project, consists of the GC-MS characterisation results for the products collected from the rejuvenation tests of degraded amine sorbents from carbon capture and related model degradation compounds. The examined amine-based sorbent samples included one heavily degraded industrial MEA solvent, one degraded solid-supported polyethyleneimine sample and 6 model MEA degradation compounds (N-(2-Hydroxyethyl)-ethylenediamine, glycylglycine, 2-Oxazolidinone, 1-(2-Hydroxyethyl)-2-imidazolidinone, 1-(2-Hydroxyethyl)-imidazole, N-Acetylethanolamine. Novel reductive approaches, which were investigated as a potential means for rejuvenating the degraded amine sorbents and where the samples for characterisation were produced, included catalytic hydrogenation, hydrous pyrolysis and hydropyrolysis with platinum, nickel and molybdenum as the catalysts used. The dataset also contains some preliminary CO2 absorption test results for a degraded MEA solvent before and after rejuvenation with hydrous pyrolysis using a continuous reactor. Full technical details of the research are contained in the final report submitted to UK CCSRC.
-
The data is in the form of excel spreadsheets and a word document of supplementary material. Publications: Foster, W.J., Danise, S., Sedlacek, A., Price, G.D., Hips, K. and Twitchett, R.J. 2015. Environmental controls on the post-Permian recovery of benthic, tropical marine ecosystems in western Palaeotethys (Aggtelek Karst, Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 374-394 Danise, S., Twitchett, R.J., Little, C.T.S. 2015. Environmental controls on Jurassic marine ecosystems during global warming. Geology, 43, 263–266; DOI:10.1130/G36390.1 Danise, S., Twitchett, R.J., Matts, K. 2014. Ecological succession of a Jurassic shallow-water ichthyosaur fall. Nature Communications, 5, 4789. DOI:10.1038/ncomms5789 Foster, W.J., Twitchett, R.J. 2014. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nature Geoscience, 7, 233-238. doi:10.1038/NGEO2079 Danise, S., Twitchett, R.J., Little, C.T.S. & Clémence, M.E. 2013. The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic). PLOS ONE, 8, e56255
-
This poster on the UKCCSRC Call 2 project Multiscale Characterisation of CO2 Storage in the United Kingdom was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-197. We combine pore scale digital rock physics, reservoir condition special core analysis, and reservoir simulation to evaluate the performance of CO2 storage for the major target storage regions of the UK. Key objectives: • Develop a dataset of relative permeability and residual trapping for major storage targets in the UK (Fig. 1), obtained experimentally at reservoir conditions • Identify the contribution of pore scale rock morphology to multiphase flow dynamics and dissolution trapping • Use the data in reservoir simulations to update dynamic capacity estimation for UK reservoirs