2014
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Scale
Resolution
-
This poster on the UKCCSRC Call 2 project, CO2 Flow Metering through Multi-Modal Sensing and Statistical Data Fusion, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-218.
-
This dataset consists of vegetation abundance data from four experiments investigating the management of arable field options for rare plants. These experiments consisted of a margin management experiment, a herbicide screening experiment, a cereal headland experiment and a crop rotation experiment. All experiments were conducted between 2011 and 2014. The margin management experiment investigated the effects of different cultivation timing and methods and herbicide treatments on the vegetation species composition and abundance within arable field margins. The herbicide screening experiment investigated the effects of different herbicides and their timing of application on the condition of fifteen species of rare arable plants. The cereal headland experiment investigated the effects of standard cereal sowing density versus reduced cereal sowing density, and of standard application of N fertilizer vs no application, on sown rare arable species and on the spontaneous weed flora of cereal stands. The crop rotation experiment was designed to provide baseline data for modelling population dynamics of rare arable species in relation to crop rotation scenarios. The data comes from a project funded by Defra (BD5204: Improving the management and success of arable plant options in ELS and HLS). Full details about this dataset can be found at https://doi.org/10.5285/4592780d-734f-4f62-9780-87afe27555d2
-
This poster on the UKCCSRC Call 2 project Novel Materials and Reforming Process Route for the Production of Ready-Separated CO2/N2/H2 from Natural Gas Feedstocks was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-181. Large reserves of shale gas and unconventional gases worldwide will ensure that hydrogen remains produced mainly via the catalytic steam reforming process (C-SR) for the next few decades. In conventional C-SR, the most energy intensive step is the production of syngas (CO+H2) in the primary reformer which relies on fired heaters in large scale furnaces. SR plants need to be enormous in order to be economical due to syngas production stage and H2 purification steps.
-
Data used to create the model outputs for NERC Grant NE/J004693/1, Geophysical Modelling of Geomagnetically Induced Currents in the UK. Data and code required to recreate results in the following papers: Beggan, C. (2015), Sensitivity of Geomagnetically Induced Currents to Varying Auroral Electrojet and Conductivity models, Earth Planets and Space, 67 (1), doi:10.1186/s40623-014-0168-9. http://nora.nerc.ac.uk/509877/ Beggan, C., Beamish, D., Kelly, G.S., Richards, A., and A. W. P. Thomson (2013), Prediction of Geomagnetically Induced Currents in the United Kingdom's National Grid, Space Weather, 11, doi: 10.1002/swe.20065. http://nora.nerc.ac.uk/502627/ Pulkkinen, A., Bernabeu, E., Eichner, J., Beggan C., and A. Thomson (2012), Generation of 100-year geomagnetically induced current scenarios, Space Weather, Vol. 10, No. 4, S04003, doi:10.1029/2011SW000750 Geological areas - United Kingdom, Ireland, North Sea
-
Although the terrestrial mantle comprises ~80 vol.% of our planet, its compositional architecture is not well understood despite the importance such knowledge holds for constraining Earth's thermal and chemical evolution over ~4.5 billion years of geological time. Our lack of detailed insight into the mantle stems in part from the fact that it is rarely exposed at our planets surface, making direct observation and study difficult. It is clear from recent study, however, that the mantle cannot be assumed to be compositionally homogenous or static over geological time. Peridotites from the ocean basins (abyssal peridotites) and from ophiolites preserve evidence for a convecting upper mantle that is chemically and isotopically heterogeneous at regional (100's km) and small (cm-to-m) scales. Complex formation and alteration upper mantle histories involving processes of melt-depletion, refertilisation (whereby originally refractory residues such as harzburgites become lherzolites again via melt addition) and melt-rock reaction have been held responsible, but the causes, timing and distribution of such processes are poorly resolved. Ophiolites, which represent partially-to-wholly preserved slivers of obducted oceanic mantle, are particularly valuable resources for assessing the timing, causes and extent of mantle heterogeneity, as they allow field-based observation to be coupled with geochemical investigation on otherwise inaccessible mantle material. Furthermore, ophiolites preserve a range of oceanic mantle lithologies (e.g., harzburgites, lherzolite and dunite) and such variation allows detailed assessment of the distribution and relative timing of events acting upon the mantle that is preserved. A distinctive attribute of some ophiolites, which contrasts with abyssal peridotites, is the presence of podiform chromitite seams, typically in the region of the petrological Moho, which are often associated with Platinum-group element mineralization. The timing and genesis of ophiolite podiform chromitites is controversial, but it has been suggested that they represent zones of focused melt channeling in supra-subduction zone settings. The Shetland (UK) and Leka (Norway) supra-subduction zone ophiolites comprise oceanic lithosphere separated at ~620 Ma on either side of a mid-ocean ridge and subsequently obducted over continental crust ~130 Ma later, each on opposite sides of the northern Iapetus Ocean. A pilot study already carried out on the Shetland ophiolite by the PI and Project Partner reveals that it preserves evidence for a complex sequence of melt depletion, percolation and refertilisation events that occurred over the lifetime of the Iapetus mantle. The critical observation made from the pilot dataset is that later mantle events only partially overprint the compositional heterogeneities developed from earlier mantle processes and that the relatively high degrees of partial melting associated with the supra-subduction zone are very effective at generating such heterogeneity. This important observation will be tested in the proposed research by 1) extending the Shetland study to greater levels of detail; 2) inclusion of a comparative study of carefully selected samples from the well-preserved Leka ophiolite; 3) drawing comparisons with existing geochemical and isotopic datasets from ophiolites that formed in other (e.g., mid-ocean ridge) tectonic settings. In order to achieve this, the powerful combination of the Re-Os isotopic system and highly-siderophile element (Os, Ir, Ru, Rh, Pt, Pd, Re, Au) abundance measurements will be utilised to discriminate between the processes responsible for generating mantle heterogeneities such as melt depletion, refertilisation and melt-rock reaction. Thus, profound insight will be gained into the chemical evolution of a piece of oceanic mantle and the development of compositional heterogeneity therein, from outcrop to oceanic plate scales, over much of the lifetime of the Iapetus Ocean.
-
The dataset contains measurements of temperature (°C) and light availability (Lux) in rivers in the Hampshire Avon catchment (UK). Six rivers within sub-catchments of contrasting geology (clay, sand, chalk) were investigated. The stream sites monitored were chosen to reflect a gradient of base flow index. Data were obtained via direct, field-based measurements every 15 minutes from February 2013 to (max) December 2014 with sensors tethered to the bed of the river at each site. Full details about this dataset can be found at https://doi.org/10.5285/9b6a6233-85ad-44f4-ba83-4905b8c48713
-
This poster on the UKCCSRC Call 1 project Oxyfuel and exhaust gas recirculation processes in gas turbine combustion for improved carbon capture performance was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-26. This research is concerned with oxyfuel combustion in gas turbine applications, in particular concentrating on the use of modern swirl-stabilised burners. Oxyfuel is considered a particularly challenging idea, since the resultant burning velocity and flame temperatures will be significantly higher than what might be deemed as a practical or workable technology. For this reason it is widely accepted that EGR-derived CO2 will be used as a diluent and moderator for the reaction (in essence replacing the role of atmospheric nitrogen). The key challenges in developing oxyfuel gas turbine technology are therefore: • Flame stability at high temperatures and burning rates. • The use of CO2 as a combustion diluent. • Potential for CO emission into the capture plant. • Wide or variable operating envelopes across diluent concentrations. • Differences in the properties of N2 and CO2 giving rise to previously unmeasured flame heat release locations.
-
This dataset contains carbon and nitrogen stock data from soils collected from Salisbury Plain, UK. The sites were selected to reflect the four main grassland management types on Salisbury Plain ranging from arable cropland to species rich grassland, with six representative grassland plots for each type (24 sites in total). Each site had two replicates for each variable measured. The data collected was intended to illustrate a gradient of ecosystem functioning and vegetation change as the grassland becomes more extensively managed. The field sampling was conducted by the University of Manchester and the Centre for Ecology & Hydrology at Wallingford. Soil C and N were analysed by the University of Manchester. The data includes carbon and nitrogen budgets to depth at all sites. Full details about this dataset can be found at https://doi.org/10.5285/58709d9b-2b52-4f5d-8f3b-49354e664aea
-
This dataset contains diatom species count data from rivers within the Hampshire Avon catchment, UK. Data were collected from five sediment cores at each site, collected in February, April, August and November during 2013. Data were collected as part of the project "The role of lateral exchange in modulating the seaward flux of C, N, P", funded under NERC's Macronutrients Cycles research programme. Full details about this dataset can be found at https://doi.org/10.5285/aec7f752-6be6-4626-bbdb-921bf8d7e3ce
-
This dataset contains greenhouse gas flux data and vegetation survey data from an experiment based at Winklebury Hill, UK. The vegetation survey comprises total species percentage cover and species richness data from four 50 cm by 50 cm quadrats. The greenhouse gas flux data comprises net ecosystem carbon dioxide exchange, photosynthesis and respiration data measured with an Infra-red Gas Analyser (IRGA); methane, carbon dioxide and nitrous oxide data measured using gas chromatography; and nitrate and ammonium from soil samples extracted with potassium chloride. The experiment used seeds and plug plants to create different plant communities on the bare chalk on Winklebury Hill and tested the resulting carbon and nutrient cycling rates and compared these to the characteristics of different plant functional groups. The experiment ran from 2013 to 2016 and this dataset contains data from 2014 only. This experiment was part of the Wessex BESS project, a six-year (2011-2017) project aimed at understanding how biodiversity underpins the ecosystem functions and services that landscapes provide. Full details about this dataset can be found at https://doi.org/10.5285/1e9cd575-66a0-4d7e-920c-4ce462efe5ce