Format

PDF

66 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Representation types

Update frequencies

Scale

Resolution

From 1 - 10 / 66
  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland through to construction. The study yielded invaluable knowledge and the resulting material are available for download here. This section of the report provides details on the organisation and management of the design as well as key design information for the End-to-End CCS chain. This includes the following: Organisation of the design teams; The End-to-End Basis of Design; The design life; The End-to-End CCS chain process; Piping and instrumentation diagrams; Plant and site layout drawings for the various sites; Equipment; Plant and equipment specifications; Subsurface engineering design reports; No attempt has been made to generalise design data. All of the design information presented is specific to the ScottishPower Consortium Project and has been presented to provide an insight into the development of the End-to-End CCS solution. The FEED design study was based on the Outline Solution developed by the Consortium prior to FEED. The Outline Solution was a conceptual design for the End-to-End CCS chain that was considered to be technically feasible within the constraints of the knowledge available at the time. It included a series of optioneering studies to identify the preferred design for this particular project. During FEED, the Outline Solution design was developed in greater detail to reduce the cost and technical uncertainty, and consequently reduce the financial, programme and technical risks prior to commencing the implementation stage of the project. It must be stressed that a FEED study is carried out to develop a design to the degree that the technical and programme risks are reduced to the agreed limits to better inform the project cost estimate. The current status is that the design has been progressed as far as is practicable within the time and cost constraints of the FEED study. Specifications and datasheets for major equipment have been developed in order that they can be issued to potential suppliers during the implementation phase of the project. The FEED study identified further activities that cannot be performed at the FEED stage of the project but which have been recorded as actions for further investigation during the implementation stage. The FEED study has advanced the development of the application of CCS technology considerably. Though research and conceptual studies are essential to the development of any new technology, they cannot identify many of the difficult design issues that are identified and addressed during a FEED study. Similarly the progress from FEED to the implementation phase is expected to present further challenges for a project of this novel nature. However, the advantage of a FEED study is that the main issues that could present high cost or programme difficulties or even potential 'show stoppers' should already have been identified and, where possible, addressed. Key decisions and design changes taken during the FEED study are explained in Section 11 of the report. The FEED study indicates that CCS remains technically feasible. The appropriate summary section from the Feed Close Out Report can be downloaded as a PDF (Design.pdf). The main text of the FEED Close Out Report, together with the supporting appendix for this section can be downloaded as PDF files.

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This chapter contains the output from many of the Project Management processes which control and report the progress of the FEED. The following commentary gives the reader a brief guide to the project management process or approach which has been used. FEED Programme: In order to scope out, control and report the FEED activity, a Work Breakdown Structure was developed. This structure had the following hierarchy - Level 1 - Chain Element; Level 2 - Phase; Level 3 - Discipline; Level 4 - Work Package (including Cost Time Resource definition); The programme is in the form of a fully resource loaded, logically linked network diagram. Risk Management: Throughout this FEED the management of risk was a key activity. This has helped inform and better understand the important risks faced by the project. This 'first of a kind' project saw a large number of new risks being identified, assessed, controlled and monitored during FEED. Project Cost Estimates: An estimating philosophy was established in FEED to set the standards for the estimates produced from across the project participants, including: To ensure a consistent approach in the collection, calculation and presentation of costs across all FEED Participants; To ensure that all likely project costs are identified and captured along with all associated details. A standard template was established for each participant to complete with the details of their section (i.e. Chain Element) of the cost estimate. The cost estimate was broadly consistent with Class 3/4 estimate as defined by AACE. Further supporting documents for chapter 10 of the Key Knowledge Reference Book can be downloaded. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/e_on_feed_/project_manage/project_manage.aspx

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This chapter presents the Health and Safety Reports produced during the current FEED stage. HAZID/ENVID studies were carried out for the following sections of the project: Kingsnorth Power Plant (impact on and from CCS); Kingsnorth CO2 capture and compression plant; CO2 Pipeline (On and Offshore); Kingsnorth CO2 Injection Platform; Wells and Reservoirs. The results of the HAZID studies for the power plant and capture and compression plant are recorded in the 'HAZID Report' and 'HAZID Report Addendum' in this Chapter. The pipeline and platform HAZID is in section 6 and the wells and reservoirs HAZID in section 7. Other reviews, such as SIMOPS (Simultaneous Operations) studies have been carried out. A review of Major Accident Hazards for the pipeline has been undertaken and the outcome is described in the report 'ALARP Review Report for Genesis Scope of Work'. Design Risk Assessments (DRAs) were carried out by the design teams, with support from the Safety Consultant. DRAs were qualitative rather than quantitative, due to the early stage of design within FEED. The DRAs are collated and summarised in the 'CDM Design Risk Register'. A draft Pre-Construction Safety Report has been produced to further inform the design process, and enhance our understanding of the significant hazards, both safety and environmental, associated with these processes. This overall approach to Health and Safety is set out in more detail in the 'Health and Safety Design Philosophy' Further supporting documents for chapter 8 of the Key Knowledge Reference Book can be downloaded.

  • QICS (Quantifying and monitoring environmental impacts of geological carbon storage) was a program funded by the Natural Environment Research Council (NERC), with support from the Scottish Government (May 2010 - December 2014) with two objectives. Firstly, to assess if any significant environmental impact would arise, if a leak from sub-sea, deep geological storage of carbon dioxide occurred. Secondly, to test and recommend tools and strategies for monitoring for (or assuring the absence of) leakage at the sea floor and in overlying waters. This data set provides a short overview of the novel experimental procedure - a world first leakage simulation in the natural environment and describes the experimental set up, sampling strategy including both temporal and spatial details. The data set consists of a pdf containing a text based project and experimental overview, a table outlining the temporal evolution of the experiment, including site selection, set up, baseline, impact and recovery phases and a diagram outlining the spatial sampling strategy. This data set contains an overview document collated by Plymouth Marine Laboratory. This provides the context for a number of specific related QICS datasets submitted to the UKCCS data archive, covering a range of geological, chemical and ecological information. QICS project website: www.bgs.ac.uk/qics/home.html. Blackford et al., 2014. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nature Climate Change 4, 1011-1016. DOI: 10.1038/NCLIMATE2381. Taylor et al., 2015. A novel sub-seabed CO2 release experiment informing monitoring and impact assessment for geological carbon storage. Int J Greenhouse Gas Control. DOI:10.1016/j.ijggc.2014.09.007.

  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what exactly would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland (Goldeneye) through to construction. The study has yielded invaluable knowledge in areas such as cost, design, end-to-end CCS chain operation, health and safety, environment, consent and permitting, risk management, and lessons learnt. The ScottishPower CCS Consortium FEED study material are available for download.

  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland through to construction. The study yielded invaluable knowledge and the resulting material are available for download here. This section of the report is provided as a support document to the tangible learning and documentation contained within the FEED Close Out Report and accompanying appendices. The experiential learning of the teams working across key functions of the FEED study was captured in guided discussions halfway through FEED to establish the specific challenges, successes and learning of the various workstreams involved in undertaking FEED. Representatives from all the workstreams were brought together in December 2010 for a Consortium-wide Lessons Learned Workshop to capture specific, discrete lessons that could benefit future CCS FEED studies in the UK and abroad. Five key themes emerged consistently across workstreams: Ensuring an appropriate mobilisation period Early engagement with key stakeholders Cross-Consortium communication to present an integrated Consortium Recognising restrictions imposed by the bounds of a competitive procurement Working with uncertainty across regulation, scope, budget and political will Workstream specific learning outcomes are summarised in the main report, with detailed examples included in the appendices. The technical and communication workstream appendices both contain examples of actual documents used during the ScottishPower Consortium FEED (National Grid CCS staff training material and the ScottishPower Consortium Communications Strategy) that were considered useful for future CCS project Developers. The appropriate summary section from the Feed Close Out Report can be downloaded as a PDF below (Lessons learned.pdf). The main text of the FEED Close Out Report, together with the supporting appendix for this section can be downloaded as PDF files. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/scottish_power/lessons/lessons.aspx

  • Publication associated with NERC grant NE/I014039/1. In this paper, we discuss how the initial stages of mass gain are affected by the specific surface area (SSA) of the ceramic material. The paper provides guidance on experimental protocols to avoid dating results being distorted by relatively early-time mass gain data.

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This chapter presents the FEED stage Capture and Compression plant technical design. The 'Design Basis for CO2 Recovery Plant' lists the design parameters relating to the capture plant site, the flue gas to be treated, the utilities available, the required life and availability of the plant, and other constraints to be complied with in the capture plant, dehydration and compression design. The details of the processes of capture, compression, and dehydration are best visualised on the Process Flow Diagrams (PFDs) which show the process flows described above together with additional detail of coolers, pumps, and other plant items. Separate PFDs are provided for the capture plant, the compression plant, and the dehydration plant to show the complete flue gas and CO2 flows. Some of the key aspects of the technical design of the Capture and Compression plant are; There are two separate water circuits shown in the quencher with separate extractions of excess water. These have been separated because the recovered quench water is of good enough quality for re-use on the power station, whilst the deep FGD waste water is sent to the water treatment plant; Molecular sieves have been selected as the most appropriate equipment for dehydration of the CO2 prior to pipeline transportation; With the particular layout constraints of the Kingsnorth site, a split layout of the absorption and regeneration equipment is preferred over the compact layout. Further supporting documents for chapter 5 of the Key Knowledge Reference Book can be downloaded. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/e_on_feed_/technical/technical.aspx

  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland through to construction. The study yielded invaluable knowledge and the resulting material are available for download here. This section of the report aims to inform potential developers of CCS of the impact of risks on the design of large-scale CCS. It discusses the ScottishPower CCS Consortium approach to risk management, looking particularly at the identification and mitigation of specific areas of risks during FEED and the mitigating actions required for the major residual risks. The section covers five key areas: Overview of the risk assessment process through FEED, including mitigation measures, major movement of the Top 50 risks on the Risk Register, and current active risks; Mitigation strategies for major project risks; Mitigation strategies for those risks with the potential to cause significant delay to the Overall Project Programme; Allocation and insurability of risks; Integrity and risk assessment of existing plant to be integrated; From the outset of FEED, risk management was co-ordinated by the Risk Workstream. The Risk Workstream included representatives of each of the Consortium Partners and Aker Clean Carbon. The Risk Workstream had a remit to capture, codify and report on progress with risk management throughout the study. The management of the risks themselves remained with the risk owners. The Consortium's risk management strategy was based on the provision of a cross-Consortium, over-arching risk management framework. This was developed to: Provide visibility of the Consortium's risk exposure Make best use of the Consortium Partners' risk management experience Facilitate the assessment of the impact of changes within the scope of one Partner's risk profile to the others Encourage the identification of risks at Partner interfaces Provide consistent risk reporting across the Consortium in line with agreed requirements Each Consortium Partner was responsible for reporting monthly on their risks to the Consortium risk lead, who in turn collated the Consortium Partner updates and reported the overall Consortium risk status to the Consortium Management Office and DECC to show how the total risk value changed over the course of FEED. The appropriate summary section from the Feed Close Out Report can be downloaded as a PDF (Risk management.pdf). The main text of the FEED Close Out Report, together with the supporting appendix for this section can be downloaded as PDF files. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/scottish_power/risk/risk.aspx

  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland through to construction. The study yielded invaluable knowledge and the resulting material are available for download here. This section of the report illustrates how the End-to-End CCS chain must be considered as a system as well as separate elements. It builds upon the description of the individual elements contained in Section 3, and captures the development of the End-to-End CCS chain design carried out during FEED. Specifically, this section focuses on the following aspects: Commissioning the system in preparation for operations, as well as decommissioning at the end of the capture and storage period; Operations and maintenance activities; Control; Metering and monitoring; Venting; This section also provides some selected information on the individual CCS chain elements and a summary of the RAM (reliability, availability and maintainability) analysis undertaken during FEED of which one of the key outputs was the anticipated CO2 injection profile for the project. The appropriate summary section from the Feed Close Out Report can be downloaded as a PDF (End to end CCS chain operation.pdf). The main text of the FEED Close Out Report, together with the supporting appendix for this section can be downloaded as PDF files. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/scottish_power/ccs_chain/ccs_chain.aspx