From 1 - 10 / 71
  • Revised full proposal cover sheet for scientific drilling (852-CPP2) 'GlaciStore: Understanding Pleistocene glaciation and basin processes and their impact on fluid migration pathways (North Sea)', submitted to Integrated Ocean Discovery Programme (IODP) April 2016. The full proposal cover sheet document is publicly available from IODP; the submitted full proposal document is restricted to the proponents for publication and for review and response from IODP. The proposal is a revision of full proposal 852-CPP in response to review by IODP. The lead submitter, on behalf to the GlaciStore consortium is Heather Stewart, British Geological Survey (BGS).The 32 proponents are from research and industry organisations in the UK, Norway, USA and Canada (BGS, Institute for Energy Technology, Lundin Norway AS, Memorial University of Newfoundland, SINTEF Energy Research, Statoil ASA, University of Bergen, University of Edinburgh, University of Oslo and University of Ottawa University of Texas at Austin). The revised full proposal cover sheet states the names of proponents of the 'GlaciStore' consortium and details for the lead submitter of the bid. The full proposal cover sheet comprises: an abstract of the submitted full proposal including description of project funding support as a Complementary Project Proposal: describes and states the scientific research objectives; summarises proposed non-standard measurements; tabulates details of the 13 proposed drill sites (revised from full proposal CPP-852) to address the scientific objectives. The objectives are to investigate: glacial history and sedimentary architecture; fluid flow and microbial processes in shallow sediments; and the stress history and geomechanical models for strata that have experienced multiple glacial and interglacial cycles. The table of revised proposed drilling sites includes designation of primary or alternate sites, the co-ordinates of the position and water depth at each proposed site, the objective for drilling and sampling and the depth to achieve the objective. The proponents, their affiliation, expertise and role for the submission are listed. UKCCSRC Grant UKCCSRC-C1-30.

  • Contains 6 SCCS technical briefings, technical letters and technical journal responses - Working Paper 2010-04: Popular response to Economides, CO2 storage is feasible; Working Paper 2010-05: Formal response to Economides, CO2 storage is feasible; Working Paper 2010-07: Comment on Little and Jackson: Potential Impacts of Leakage from Deep CO2 Geosequestration on Overlying Freshwater Aquifers; Working Paper 2012-01: Comment by Stuart Haszeldine on Zoback and Gorelick; Working Paper 2014-01: Sleipner CO2 securely stored deep beneath seabed, in spite of unexpected Hugin fracture discovery; Working Paper 2015-02: Carbon Dioxide Transport Plans for Carbon Capture and Storage in the North Sea Region - A summary of existing studies and proposals applicable to the development of Projects of Common Interest.

  • Report summarising the contents of the seismic analysis toolbox produced during the DiSECCS project. The toolbox comprises an online library of seismic software developed and utilised in the project, and presented in a form that other practitioners can utilise and tailor to their own specific needs. The toolbox include software for the measurement and characterisation of thin CO2 layers by spectral and attenuation analysis, fracture characterisation via wavelet coda analysis, novel rock physics algorithms and a summary of new laboratory analyses.

  • Technical report (2009) commissioned by Christian Aid and written by researchers from the University of Edinburgh and the University of Surrey. It aims to explore the prospects for carbon capture and storage (CCS) to play a significant role within global action to mitigate the risk of climate change, with a focus on India. Available for download at http://hdl.handle.net/1842/15679.

  • The CO2 storage operation at Sleipner in the Norwegian North Sea provides an excellent demonstration of the application of time-lapse surface seismic methods to CO2 plume monitoring under favorable conditions. Injection commenced at Sleipner in 1996 with CO2 separated from natural gas being injected into the Utsira Sand, a major saline aquifer of late Cenozoic age. CO2 injection is via a near-horizontal well at a depth of about 1012 m below sea level (bsl) some 200 m below the reservoir top, at a rate approaching 1 million tonnes (Mt) per year, with more than 11 Mt currently stored. The report can be downloaded at http://nora.nerc.ac.uk/9418/.

  • SCCS presentations, consultations, responses, briefings and communications on CCS and CO2 storage for the period 2015 - 2016

  • UKCCSRC Grant EP/P026214/1. The UKCCSRC Spring Web Series ran from 30th March and running until 10th July 2020 relating to various aspects of carbon capture and storage. For more information see https://ukccsrc.ac.uk/web-series/ukccsrc-spring-web-series/.

  • This presentation on the EPSRC project, DiSECCS, was presented at the Cranfield Biannual, 8.04.13. Grant number: Grant number: EP/K035878/1.

  • This report presents a set of pragmatic and workable generic procedures, suggested best practices and other recommendations and observations for the safe and sustainable closure of geological CO2 storage sites. These have been distilled from the results of the CO2CARE project and represent the most important messages that will be of benefit to Regulators, storage site Operators and other stakeholders. The report can be downloaded from http://nora.nerc.ac.uk/512805/

  • The data consists of a poster presented at 'The Fourth International Conference on Fault and Top Seals', Almeria, Spain, 20-24th September 2015. The poster describes work carried-out on behalf of the 'Fault seal controls on CO2 storage capacity in aquifers' project funded by the UKCCS Research Centre, grant number UKCCSRC-C1-14. The CO2-rich St. Johns Dome reservoir in Arizona provides a useful analogue for leaking CO2 storage sites, and the abstract describes an analysis of the fault-seal behaviour at the site as well as at the UK Fizzy and Oak CO2-rich gas Fields