Keyword

UKCCS

396 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 10 / 396
  • This poster on the UKCCSRC Call 1 project Multiphase flow modelling for hazard assessment of dense phase CO2 pipelines containing impurities was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-07. The aim of the project is to develop and validate experimentally a heterogeneous flow model for predicting the transient depressurisation and outflow following the puncture of dense-phase CO2 pipelines containing typical impurities. Given that CO2 is an asphyxiant at high concentrations, this information is pivotal to assessing all the hazard consequences associated with CO2 pipeline failure, including fracture propagation behaviour, atmospheric dispersion, emergency shutdown valve dynamics and emergency blowdown.

  • This data set includes microseismic and structural geological data collected at Aquistore (Canada). They cover a period from 26th April - 21st June 2015, during which CO2 was being injected in the Aquistore injection well at 3.5 km depth. The data were collected in the framework of a research project funded by UKCCSRC (EPSRC) and based at Aquistore in order to identify whether any microseismic events, that could be related to the CO2 injection, took place during this period and use of these events to image potential flowpathways at depth. The data were collected at a sampling rate of 1000Hz using a short-period microseismic array with a 25m aperture, consisting of one three-component and three one-component sensors (Lennartz, MKIII and MKII lite). The array was placed at 50cm depth, approximately 150m away from the injection well. Acquisition was continuous during the above period. The microseismic data are available in PASCAL or ASCII format. Full details on equipment used in data collection and data formats are available in the README file. Due to commercial constraints this dataset is currently under embargo until the end of 2017. Due to the large size of the dataset additional information and access requirements can be requested via the contact email supplied.

  • This presentation on the UKCCSRC Call 1 project 3D Mapping of Large-Scale Subsurface Flow Pathways using Nanoseismic Monitoring was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C1-19.

  • Fault risk remains a key parameter in evaluating the potential for trapping CO2 in the subsurface, yet very little is known about the conditions under which CO2 and CO2/hydrocarbon mixtures are retained by faults. The project will investigate the roles and properties of faults in their capacity to retain CO2. Natural and engineered accumulations of hydrocarbon and CO2-hydrocarbon mixtures will be examined across a wide self-similar province (to minimize geological variability) to develop a knowledge base of fault flow properties. Fault geometries, orientations, seismic attributes, proven vertical trapping and lateral pressure retention values and column-heights will be documented. High-quality data-rich examples will be selected for analysis with established software tools to predict and calibrate CO2 column height and pressure retention. Differences between prediction and observation will be reconciled by checking site-specific geology and optimising the petrophysical property values assigned to the faults, reservoir, seals and fluids (within realistic ranges) to produce an understandable pragmatic and calibrated fit. The fault properties knowledge-base and the newly calibrated tools will be applied to selected key reservoirs from the ETI UK Storage Assessment Project (UKSAP). This will provide improved and evidence-based assessment of storage in regional UK North Sea aquifers such as the Bunter Sandstone, Forties, Tay and Captain. These are some of the largest and promising early developments for storage and are vital to reducing storage costs via multi-user storage. The Bunter Sandstone has 8Gt CO2 unrisked capacity - but only 1Gt may be considered viable because of fault risk. The Captain, Forties and Tay sandstones total 11.5Gt CO2 unrisked capacity, of which only 1Gt may be currently considered viable. The impact of the research will be to upgrade parts of the UKSAP assessment and to assist the development of the large capacity element in these formations that does have perceived fault risk. Grant number: UKCCSRC-C1-14.

  • This poster on the UKCCSRC (UK Carbon Capture and Storage Research Centre) Call 1 project, Multi-Phase Flow Modelling for Hazardous Assessment, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-07.

  • The project will three-dimensionally image hydraulically conductive features in the reservoir, caprock and overburden of an active CO2 injection site: the Aquistore site, Canada. Our research will provide important information on potential migration pathways within the storage complex to inform future monitoring strategies at the Aquistore site and at future storage sites. We will monitor micro-seismic events prior to, and during, CO2 injection using a three-component nanoseismic surface monitoring array which will complement data collected by the existing geophone network at the site. This analysis can be used to provide deep focussed monitoring information on permeability enhancement near the injection point. As injection continues it will also enable imaging of any flowing features within the caprock. Grant number: UKCCSRC-C1-19.

  • This project will develop and experimentally validate a heterogeneous flow model for predicting the transient depressurisation and outflow following the puncture of dense phase CO2 pipelines containing typical impurities. Such data is expected to serve as the source term for the quantitative consequence failure assessment of CO2 pipelines including near field and far field dispersion, fracture propagation and blowdown. Grant number: UKCCSRC-C1-07. UKCCSRC - UK Carbon Capture and Storage Research Centre.

  • Imperial College has modelled and designed from first principles a counter-flow thermal oxygen reactor using CuO (MnO) based particles as an oxygen carrier, for replacing the burner in conventional coal fire power plant. The length of the reactor depends on the required falling distance for CuO particles to heat up and complete the decomposition. Initial calculations indicated that this was higher than hoped (500 mm). The design is being optimised. A prototype burner has been built and tested according to the design. After intense tests and some modifications on the prototype, we managed to show some encouraging results as a proof of concept. It is demonstrated that under the current design, there is strong evidence that the particles exhibited sufficiently fast kinetics to release the required oxygen to support complete combustion of propane fuel in an initially sub-stoichiometric flame. The results have led to the construction of a second version of the burner, with improved designed, and a more powerful surface mixed burner capable of much higher heat duty than the current one. The new version of the burner will be tested during the next few months. Part II of the report is restricted and not available for download.

  • The inherent nature of electricity necessitates a permanent balance between generation and demand in electricity systems. This has obvious implications for the operation of CCS power plants in decarbonised electricity systems with inflexible nuclear and variable renewable supply. The low variable costs of nuclear and some intermittent renewable technology allow them to run as base-load generators and shift fossil fuel plants from base-load to midmerit plants. CCS power plants can be expected to increasingly operate in ways to balance variations, sometimes simultaneously, in the production of some intermittent renewable technologies and variations in electricity demand, resulting in more frequent ramping and start/stop cycles. As a result, they may also operate over a wide output range to maintain the quality and security of electricity supply by providing ancillary services, e.g. capacity and energy reserve, to the electricity network. This work characterises the operating envelope, the performance and the corresponding compressed CO2 flow of coal power plants for a range of loads, with or without voluntary by-pass of the capture unit. Optimised part-load operating strategies provide novel insights into the additional capabilities of CCS power plants specifically designed for enhanced operating flexibility. The paper is available at http://www.sciencedirect.com/science/article/pii/S1876610214026010, DOI: doi:10.1016/j.egypro.2014.11.786.

  • This poster on the UKCCSRC Call 1 project, Determination of water Solubility in CO2 Mixtures, was presented at the Cambridge Biannual, 02.04.14. Grant number: UKCCSRC-C1-21.