2011
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Scale
Resolution
-
Data identifying landscape areas (shown as polygons) attributed with geological names and rock type descriptions. The scale of the data is 1:10 000 scale. Onshore coverage is partial with approximately 30% of England, Scotland and Wales available in the version 2 data release. BGS intend to continue developing coverage at this scale; current focus is to include all large priority urban areas, along with road and rail transport corridors. Superficial deposits are the youngest geological deposits formed during the most recent period of geological time, the Quaternary, which extends back about 2.58 million years from the present. They lie on top of older deposits or rocks referred to as bedrock. Superficial deposits were laid down by various natural processes such as action by ice, water, wind and weathering. As such, the deposits are denoted by their BGS lexicon name, which classifies them on the basis of mode of origin (lithogenesis) with names such as, 'glacial deposits', 'river terrace deposits' or 'blown sand'; or on the basis of their composition such as 'peat'. Most of these superficial deposits are unconsolidated sediments such as gravel, sand, silt and clay. The digital data includes attribution to identify each deposit type (in varying levels of detail) as described in the BGS Rock Classification Scheme (volume 4). The data are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are available under BGS data licence.
-
This national dataset brings together sixteen national datasets to create a GIS product that provides the information necessary to determine the extent to which the ground is suitable for infiltration sustainable drainage systems (SuDS). It includes derivations of the following datasets: soluble rocks, landslide hazards, groundwater flooding susceptibility, made ground, shallow mining hazards, geological indicators of flooding, depth to water table, superficial thickness, compressible ground, collapsible ground, swelling clays, running sands, predominant flow mechanism, permeability indices and the Environment Agencys source protection zone dataset. All datasets have been reclassified and reattributed (with text descriptions and a score field indicating the suitability of the ground for infiltration) and feature in the end product both as single entities, but also in derived 'screening' maps that combine numerous datasets.
-
The Marine Hard Substrate dataset maps areas of rock or hard substrate outcropping or within 0.5m of the sea-bed. The interpretation was based on a variety of data sourced from within the British Geological Survey and externally. Data consulted includes archive sample and seismic records, side scan sonar, multibeam bathymetry and Olex datasets. The distribution of hard substrate at the seabed, or within 0.5 m is important in dictating the benthic assemblages found in certain areas. Therefore, an understanding of the distribution of these substrates is of primary importance in marine planning and designation of Marine Conservation Zones (MCZs) under the Marine and Coastal Access Act, 2009. In addition, a number of other users will value these data, including marine renewable companies, aggregate companies, the fishing and oil and gas industries. In order to address this issue it was necessary to update British Geological Survey sea-bed mapping to delineate areas where rock, boulders or cobbles are present at, or within 0.5m of the sea-bed surface. A polygon shape file showing areas of rock or hard substrate at, or within 0.5m of the sea-bed has been developed. The dataset has been created as vector polygons and are available in a range of GIS formats, including ArcGIS (.shp), ArcInfo Coverages and MapInfo (.tab). More specialised formats may be available but may incur additional processing costs.
-
This project is aimed at understanding what kind of conditions the Earth's core formed under and how this affected the amount of oxygen present in the rocky interior of the Earth. It uses experiments which simulate the very high pressures and temperatures that would have been present in the Earth's interior when the core formed, combined with very precise chemical analyses of these experiments. From these results I will learn how certain chemical elements distributed themselves between the metal core and the rocky outer part of the Earth, and whether this distribution behaviour changes with different conditions and with the amount of oxygen present. By comparing the results I get from the experiments with the chemical compositions of rocks from the Earth and very primitive meteorites we will be able to understand better how the Earth's core formed, and how this may have affected the chemistry of our planet and the development of its atmosphere and oceans. Four papers are linked to this grant: Stable chromium isotopic composition of meteorites and metal-silicate experiments: Implications for fractionation during core formation Unlocking the zinc isotope systematics of iron meteorites Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts Isotopic evidence for internal oxidation of the Earth's mantle during accretion
-
5 km resolution rain rate data from Met Office's Predannack C-band rain radar, Cornwall, England as part of the NIMROD, very short range forecasting system used by the Met Office. 5 km rain rate data are available from 2004 until present. Radar images from the C-band (5.3 cm wavelength) radar are received by the Nimrod system 5 minute intervals respectively.
-
Theme 5 - Cryosphere and Polar Oceans - of the National Centre for Earth Observation (NCEO) is aimed at resolving uncertainties in future climate and sea-level arising from behaviour of the cryosphere. Under this theme, 5 year time series Ice thickness data used by Katharine Giles, Seymour Laxon and Andy Ridout in their paper "Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum" (Geophysical Research Letters, Vol. 35, L22502, doi:10.1029/2008GL035710, 2008) are presented.
-
The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) was organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under International Geosphere Bisosphere Programme (IGBP) and World Climate Research Programme (WCRP). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACC-MIP) consists of several sets of simulations that have were designed to facilitate useful evaluation and comparison of the AR5 (Intergovernmental Committee on Climate Change Assessment Report 5) transient climate model simulations. This dataset contains measurements from climate simulations from UEDI of the 20th century and the future projections, which output feedback between dynamics, chemistry and radiation in every model time step. The data are collected from running the latest set of ozone precursor emissions scenarios, which output tropospheric ozone changes from 1850 to 2100.
-
1 km resolution data from the NIMROD system data describe rain-rate observations recorded by the Jersery rain radar, Channel Islands, by NIMROD, which is a very short range forecasting system used by the Met Office. 1 km rain rate data are available from 2011 until present. Radar images from the C-band (5.3 cm wavelength) radar are received by the Nimrod system 5 minute intervals.
-
The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) was organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under International Geosphere Bisosphere Programme (IGBP) and World Climate Research Programme (WCRP). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACC-MIP) consists of several sets of simulations that have were designed to facilitate useful evaluation and comparison of the AR5 (Intergovernmental Committee on Climate Change Assessment Report 5) transient climate model simulations. This dataset contains measurements from climate simulations from GISS of the 20th century and the future projections, which output feedback between dynamics, chemistry and radiation in every model time step. The data are collected from running the latest set of ozone precursor emissions scenarios, which output tropospheric ozone changes from 1850 to 2100.
-
Data were collected on the 27th of November 2008 and on the 6th of January 2009 by the University of Manchester scanning mobility particle sizer at the Chilbolton site in support of the FAAM Campaign in the South-West of England. The dataset contains measurements of concentrations of aerosols of specific sizes. The data were collected for use in the ICE project, which is one of multiple projects within the APPRAISE (Aerosol Properties, PRocesses And Influences on the Earth's climate) programme.