Storage
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
-
The data presented herein comprises raw and upscaled medical X-Ray CT data, MATLAB processing files and MATLAB analytical model files for the paper ‘Rate dependency of capillary heterogeneity trapping for CO2 storage’. The medical X-ray CT data is organised as three repeat experiments, each at a different flow rate. Full core scans capture the steady state core flood experiments. The core is a heterogenous Bentheimer outcrop (39 mm diameter, 15 cm length). Experimental MATLAB processing files upscale the saturation values in 3D. Post-processing MATLAB files are used to produce figures in the paper. The MATLAB analytical model files contain input parameters and code needed to run the analytical model and compare with experimental results.
-
The potential for leakage of CO2 from a storage reservoir into the overlying marine sediments and into the water column and the impacts on benthic ecosystems are major challenges associated with Carbon Capture and Storage (CCS) in subseafloor reservoirs. A field-scale controlled CO2 release experiment was conducted in shallow, unconsolidated marine sediments. Changes were monitored of the chemical composition of the sediments and overlying water column before, during and up to 1 year after the 37-day long CO2 release from May 2012 to May 2013 in Ardmucknish Bay. Meiofaunal samples were collected and meiofauna higher taxa and the nematodes species (where possible) were identified by Plymouth Marine Laboratory. This dataset was collected under the program QICS (Quantifying and monitoring environmental impacts of geological carbon storage) which was funded by the Natural Environment Research Council (NERC), with support from the Scottish Government. The results are contained in an Excel file. QICS project website: www.bgs.ac.uk/qics/home.html. This data is currently under embargo until publication of the dataset in research article (estimated end of 2015).
-
This dataset contains data from a marine geophysical and multibeam survey which took place in April 2012 in the area of Ardmucknish Bay on board the RV White Ribbon. This was a follow up survey to the previous work carried out in this area in 2011 (2011/4). QICS (Quantifying and monitoring potential ecosystem impacts of geological carbon storage) was a scientific research project funded by NERC; its purpose was to improve the understanding of the sensitivities of the UK marine environment to a potential leak from a carbon capture storage (CCS) system. The aim of the survey was to assess any affect the drilling of the borehole had on the underlying sediments. Sea floor bathymetry data were collected using a Kongsberg EM3002D multibeam system. Sub bottom seismic profiling data were collected using an Applied Acoustics surface tow boomer (STB). Technical details of the survey are contained in the BGS Report of Survey. Webpage www.bgs.ac.uk/QICS/. NERC Grant NE/H013954/1.
-
This dataset contains data from a marine geophysical survey which took place on 1st October 2014 in the area of Ardmucknish Bay on board the RV White Ribbon. The survey was carried out by the British Geological Survey (BGS). This was a follow up survey to the previous work carried out in this area (Surveys: 2011/4 and 2012/5, 2012/7) to monitor changes in the geometry of gas charged sediments. QICS (Quantifying and monitoring potential ecosystem impacts of geological carbon storage) was a scientific research project funded by NERC; its purpose was to improve the understanding of the sensitivities of the UK marine environment to a potential leak from a carbon capture storage (CCS) system. Sub bottom seismic profiling data were collected using an Applied Acoustics surface tow boomer (STB). Webpage www.bgs.ac.uk/QICS/.
-
The QICS project (Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbons Storage) was established to improve our understanding of the potential impacts of CO2 release on the environment and to develop tools and best practice for monitoring sub-seabed CCS reservoirs. To monitor the potential impact of a CO2 leak to surficial benthic megafauna, cages of bivalves (the common mussel Mytilus edulis Linnaeus, 1758 and the king scallop Pecten maximus (Linnaeus, 1758)) were deployed at the gas release site and at a reference site in the QICS experiment - both within Ardmucknish Bay, Oban, Scotland. Replicate individuals were sampled at six time points over a 125-day period, which spanned both the 37-day injection and recovery phases of the experiment, in order to establish impacts to molecular physiology. Samples of bivalves were also simultaneously sampled from a reference site within the bay in order to contrast changes in physiology induced by the gas release with naturally variability in the physiological performance of both species. There was no evidence of gene regulation of either selected carbonic anhydrases (CAx genes) or the alpha subunit of sodium potassium ATPAses (ATP1A genes) in individual bivalves collected from the CO2 gas release site, in either species. In the common mussel Mytilus edulis there was only evidence for changes with time in the expression of genes coding for different classes of carbonic anhydrase. It was concluded that the effects of the plume of elevated pCO2 on ion-regulatory gene transcription were negligible in both species. Pratt et al. 2015. No evidence for impacts to the molecular ecophysiology of ion or CO2 regulation in tissues of selected surface-dwelling bivalves in the vicinity of a sub-seabed CO2 release. International Journal of Greenhouse Gas Control. DOI:10.1016/j.ijggc.2014.10.001. QICS project website: www.bgs.ac.uk/qics/home.html.
-
Database of palaeontological specimens, world-wide coverage, including both "Museum" and "Survey" fossil collections from Keyworth and Edinburgh. Development commenced in Autumn 2000 and is ongoing. The database currently contains over 100,000 entries, including half of the taxonomic reference collection held at BGS Keyworth. Internet search access is available on the BGS web site. Key fields in the dataset, many of which can be searched for, include, sample number, nature of sample, confidentiality, collector/donator & year, register details, locality information (including grid reference, map sheet etc.), stratigraphy, type status, identifications & authority and publication details.
-
The response of the benthic microbial community to a controlled sub-seabed CO2 leak was assessed using quantitative PCR measurements of benthic bacterial, archaeal and cyanobacteria/chloroplast 16S rRNA genes. Similarly, the impact of CO2 release on the abundance of benthic bacterial and archaeal ammonia amoA genes and transcripts, and also to the abundance of nitrite oxidizer (nirS) and anammox hydrazine oxidoreductase (hzo) genes and transcripts. Samples were taken from four zones (epicentre (zone 1); 25m distant (zone 2), 75m distant (zone 3) and 450m distant (zone 4)) during 6 time points (7 days before CO2 exposure, after 14 and 36 days of CO2 release, and 6, 20 and 90 days after the CO2 release had ended). Changes to the active community of microphytobenthos and bacteria were also assessed before, during and after CO2 release using Denaturing Gradient Gel Electrophoresis of cyanobacteria/chloroplast 16S rRNA. Changes to the composition of the active bacterial community was assessed first using Terminal Restriction Fragment Length Polymorphism (T-RFLP) of bacterial 16S rRNA. In depth comparisons of possible changes to the active bacterial community at zone 1 and 4 before, during and immediately after the CO2 release was performed using 16S rRNA 454 pyrosequencing. This dataset was created by Plymouth Marine Laboratory (PML) under the program QICS (Quantifying and monitoring environmental impacts of geological carbon storage) which was funded by the Natural Environment Research Council (NERC), with support from the Scottish Government. The results are contained in three text files. QICS project website: www.bgs.ac.uk/qics/home.html. Tait et al. (2015) Rapid response of the active microbial community to CO2 exposure from a controlled sub-seabed CO2 leak in Ardmucknish Bay (Oban, Scotland). IJGGC DOI: 10.1016/ijggc.2014.11.021. Watanabe et al. (2015) Ammonia oxidation activity of microorganisms in surface sediment to a controlled sub-seabed release of CO2. IJGGC DOI: 10.1016/j.ijggc.2014.11.013.
-
CO2 was injected into shallow unconsolidated marine sediments in Ardmucknish Bay, Oban. 2D seismic reflection data were collected pre-release (15/05/2012), syn-release (17/05/2012, 18/05/2012, 19/052012, 29/05/2012, 30/05/2012, 20/06/2012) and after release stages (23/04/2014 and 24/04/2014) of CO2 help to better understand the spatial and temporal evolution of free gas anomalies within the overburden. The impact of CO2 on sediment acoustic properties, namely seismic reflectivity and attenuation, was also investigated. This dataset was collected by the National Oceanography Centre Southampton (NOCS) and the British Geological Survey (BGS) under the program QICS (Quantifying and monitoring environmental impacts of geological carbon storage) which was funded by the Natural Environment Research Council (NERC), with support from the Scottish Government. The dataset includes segy files, a presentation which summarises the main results and a map showing the spatial extent of the seismic data collected after gas release. QICS project website: http://www.bgs.ac.uk/qics/home.html. Cevatoglu et al., 2015. Gas migration pathways, controlling mechanisms and changes in sediment acoustic properties observed in a controlled sub-seabed CO2 release experiment. Int J Greenhouse Gas Control. DOI:10.1016/j.ijggc.2015.03.005. The post-release data is currently restricted. NERC grant NE/H013873/1
NERC Data Catalogue Service