From 1 - 10 / 71
  • This poster on the UKCCSRC Call 1 project CO2 storage in Palaeogene and Neogene hydrogeological systems of the North Sea: preparation of an IODP scientific drilling bid was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-30. The North Sea Basin (NSB) is considered to be suitable for commercial-scale CO2 storage, due to its favourable geological setting, its proximity to sources, and pioneering operational experience storing CO2 at the Sleipner injection site. The shallow Neogene and Quaternary sediments of the NSB form the overburden and seal to these underlying CO2 reservoirs but are under-researched, even though the NSB is a mature petroleum system, penetrated by many thousands of wells. Quaternary sediments, up to 1000 metres thick, are in general bypassed to reach the deeper, profitable hydrocarbon resources. UKCCSRC and CLIMIT programme funded scientific, governmental and industrial partners from the UK and Norway to collaborate with the purpose of submitting a proposal to the International Ocean Discovery Program (IODP) for scientific drilling to investigate the overburden to CO2 storage strata.

  • This poster on the UKCCSRC Call 1 project, Chemical Looping for low-cost Oxygen Production, was presented at the Sheffield Biannual, 08.04.13. Grant number: UKCCSRC-C1-39.

  • This poster on the UKCCSRC Call 1 project, Determination of water Solubility in CO2 Mixtures, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-21.

  • This poster on the UKCCSRC Call 1 project Tractable equations of state for CO2 mixtures in CCS was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-22. A potential bottle-neck for CCS is the transport of CO2 from power plants to the storage location, by pipeline. Key to safe and inexpensive transport is a detailed understanding of the physical properties of carbon dioxide. However, no gas separation process is 100% efficient, and the resulting carbon dioxide contains a number of different impurities. These impurities can greatly influence the physical properties of the fluid compared to pure CO2. They have important design, safety and cost implications for the compression and transport of carbon dioxide. This project aimed to develop new methods to produce custom models (equations of state) for impure CO2 behaviour for CCS.

  • This poster on the UKCCSRC Call 2 project, Multiscale characterization of CO2 storage in the United Kingdom, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-197.

  • This poster on the UKCCSRC Call 1 project Oxyfuel and exhaust gas recirculation processes in gas turbine combustion for improved carbon capture performance was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-26. This research is concerned with oxyfuel combustion in gas turbine applications, in particular concentrating on the use of modern swirl-stabilised burners. Oxyfuel is considered a particularly challenging idea, since the resultant burning velocity and flame temperatures will be significantly higher than what might be deemed as a practical or workable technology. For this reason it is widely accepted that EGR-derived CO2 will be used as a diluent and moderator for the reaction (in essence replacing the role of atmospheric nitrogen). The key challenges in developing oxyfuel gas turbine technology are therefore: • Flame stability at high temperatures and burning rates. • The use of CO2 as a combustion diluent. • Potential for CO emission into the capture plant. • Wide or variable operating envelopes across diluent concentrations. • Differences in the properties of N2 and CO2 giving rise to previously unmeasured flame heat release locations.

  • This poster on the UKCCSRC Call 2 project, Performance of Flow Meters with Dense Phase CO2 and CCS Recovery Streams, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-201.

  • This poster on the UKCCSRC Call 2 project Investigating the radiative heat flux in small and large scale oxy-coal furnaces for CFD model development and system scale up was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-193. Oxy-fuel (coal or biomass) combustion significantly changes the heat transfer properties of power plant furnaces. Thus future power plants using oxy-fuel technology will rely greatly on computational modelling. This project aims to collect combustion and heat transfer data from both small and large scale furnaces and to validate the computational model in order to make it ready for future technology scale up. Specific objectives are: • Take measurements at the 250 kW oxy-coal furnace at PACT national facilities in Sheffield, including combustion and heat transfer data. • Take measurements at a 35 MW oxy-coal furnace in China. • Validate CFD models developed and investigate the combustion and heat transfer properties in both large and small furnaces.

  • This poster on the UKCCSRC Call 2 project Towards more flexible power generation with CCS was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C2-214.

  • This poster on the UKCCSRC Call 2 project Novel reductive rejuvenation approaches for degraded amine solutions from PCC in power plants was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-189. Aqueous amine scrubbing is currently considered to be the best available technology of carbon capture for both pulverised fuel and natural gas power plants. A major problem is the thermo-oxidative degradation of chemical amine solvents used, leading to a range of operational problems and the generation of large quantities of hazardous aqueous waste. However, no existing technologies are able to effectively deal with these problems particularly the handling of the toxic waste solvent streams. The conversion of the degraded amines back to usable solvents or saleable products has been regarded as a novel effective way for cost reduction.