Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
-
Final report for EPSRC project, Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership. Grant number: #EP/K036033/1.
-
This poster on the UKCCSRC Call 2 project, Process-performance indexed design of task-specific ionic liquids for post-combustion CO2 capture, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-199.
-
This poster on the UKCCSRC Call 2 project, Process-performance indexed design of task-specific ionic liquids for post-combustion CO2 capture, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-199.
-
This poster on the UKCCSRC Call 2 project CO2 Flow Metering through Multi-Modal Sensing and Statistical Data Fusion was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-218. Measurement and monitoring of CO2 flows across the Carbon Capture and Storage (CCS) chain are essential to ensure accurate accounting of captured CO2 and help prevent leaking during transportation to storage sites. The significant changes in physical properties of CO2 depending on its state (gas, liquid, two-phase or supercritical) mean that CO2 flows in CCS pipelines are complex by their nature. Meanwhile, impurities in a CO2 pipeline also make the flow more likely in the form of two-phase mixture. Despite difficulties due to the changes in CO2 properties, there has been very little research into metering issues of CO2 flows. The aim of this project is to develop a cutting-edge technology for CO2 flows metering in CCS pipelines. The objectives are as follows: • To establish a mass reference platform for CO2 flowmeter calibration; • To develop a prototype multi-modal sensing system and data fusion algorithms for mass flow metering of CO2; • To evaluate the performance of the multi-modal sensing system under single-phase and two-phase CO2 flow conditions.
-
This poster on the UKCCSRC Call 2 project, Novel reductive rejuvenation approaches for degraded amine solutions from PCC in power plants, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-189.
-
This poster on the UKCCSRC Call 2 project Multiscale Characterisation of CO2 Storage in the United Kingdom was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-197. We combine pore scale digital rock physics, reservoir condition special core analysis, and reservoir simulation to evaluate the performance of CO2 storage for the major target storage regions of the UK. Key objectives: • Develop a dataset of relative permeability and residual trapping for major storage targets in the UK (Fig. 1), obtained experimentally at reservoir conditions • Identify the contribution of pore scale rock morphology to multiphase flow dynamics and dissolution trapping • Use the data in reservoir simulations to update dynamic capacity estimation for UK reservoirs
-
This poster on the UKCCSRC Call 2 project, UK demonstration of Enhanced Calcium looping, and first Global Demonstration of Advanced Doping Techniques, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-209.
-
This review details the laboratory experiments that have investigated leakage of geologically stored CO2 (as of June 2013). These experiments have covered a range of leakage factors. Knowledge of these factors can both compliment and help inform any future experiments at the QICS site. As such, the report details what experiments have been performed in the lab to date, how lab experiments can inform QICS and how QICS could inform laboratory experiments. Grant number: UKCCSRC-C1-31.
-
This poster on the UKCCSRC Call 2 project Novel Materials and Reforming Process Route for the Production of Ready-Separated CO2/N2/H2 from Natural Gas Feedstocks was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-181. Large reserves of shale gas and unconventional gases worldwide will ensure that hydrogen remains produced mainly via the catalytic steam reforming process (C-SR) for the next few decades. In conventional C-SR, the most energy intensive step is the production of syngas (CO+H2) in the primary reformer which relies on fired heaters in large scale furnaces. SR plants need to be enormous in order to be economical due to syngas production stage and H2 purification steps.
-
This poster on the UKCCSRC Call 1 project Oxyfuel and exhaust gas recirculation processes in gas turbine combustion for improved carbon capture performance was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-26. This research is concerned with oxyfuel combustion in gas turbine applications, in particular concentrating on the use of modern swirl-stabilised burners. Oxyfuel is considered a particularly challenging idea, since the resultant burning velocity and flame temperatures will be significantly higher than what might be deemed as a practical or workable technology. For this reason it is widely accepted that EGR-derived CO2 will be used as a diluent and moderator for the reaction (in essence replacing the role of atmospheric nitrogen). The key challenges in developing oxyfuel gas turbine technology are therefore: • Flame stability at high temperatures and burning rates. • The use of CO2 as a combustion diluent. • Potential for CO emission into the capture plant. • Wide or variable operating envelopes across diluent concentrations. • Differences in the properties of N2 and CO2 giving rise to previously unmeasured flame heat release locations.