From 1 - 10 / 71
  • This poster on the UKCCSRC Call 2 project Flexible CCS operations combined with online solvent monitoring: A pilot-scale study was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-214. This project focuses on enhancing the flexibility of amine based post-combustion capture systems 1. To evaluate the flexible operation capabilities of current post-combustion CCS plant designs via dynamic scenario testing at pilot scale. 2. To identify hardware bottlenecks to dynamic operation and suggest improvements. 3. To develop new instrumentation, operating strategies and control systems which will enhance operational flexibility. 4. To obtain real plant data to complement dynamic modelling efforts.

  • This poster on the UKCCSRC Call 1 project Flexible CCS Network Development (FleCCSnet) was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-40. The aim of the project was to carry out research to enable the production of design and operating guidelines for CCS pipeline networks in order that these networks can react effectively to short, medium and long term variations in the availability and flow of CO2 from capture plants and also to the constraints imposed on the system by the ability (or otherwise) of CO2 storage facilities to accept variable flow. The amount of CO2 captured at a power station is expected to become more variable in the future as the electricity grid brings in more and more intermittent renewable energy (meaning a conventional power station is temporarily not needed or in reduced operation as the renewable energy takes precedent). The storage site will also face periods of maintenance which will impose constraints on the flow into the store and it is also important to look at the case of upset conditions in order to be able to predict any potential problems. Solutions to these all these issues need to be factored into the design of the CCS network, the focus of the project was to identify the issues surrounding flexibility and explore some of them.

  • This poster on the UKCCSRC Call 1 project, Determination of water Solubility in CO2 Mixtures, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-21.

  • This poster on the UKCCSRC Call 1 project Oxyfuel and exhaust gas recirculation processes in gas turbine combustion for improved carbon capture performance was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-26. This research is concerned with oxyfuel combustion in gas turbine applications, in particular concentrating on the use of modern swirl-stabilised burners. Oxyfuel is considered a particularly challenging idea, since the resultant burning velocity and flame temperatures will be significantly higher than what might be deemed as a practical or workable technology. For this reason it is widely accepted that EGR-derived CO2 will be used as a diluent and moderator for the reaction (in essence replacing the role of atmospheric nitrogen). The key challenges in developing oxyfuel gas turbine technology are therefore: • Flame stability at high temperatures and burning rates. • The use of CO2 as a combustion diluent. • Potential for CO emission into the capture plant. • Wide or variable operating envelopes across diluent concentrations. • Differences in the properties of N2 and CO2 giving rise to previously unmeasured flame heat release locations.

  • This poster on the UKCCSRC Call 2 project, Process-performance indexed design of task-specific ionic liquids for post-combustion CO2 capture, was presented at the Cardiff Biannual, 10.09.14. Grant number: UKCCSRC-C2-199.

  • This poster on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-40.

  • This presentation on the UKCCSRC Call 2 project Novel reductive rejuvenation approaches for degraded amine solutions from PCC in power plants was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C2-189.

  • This poster on the UKCCSRC Call 2 project Performance of Flow Meters with Dense Phase CO2 and CCS Recovery Streams was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-201. Captured carbon dioxide (CO2) from CCS operations needs to be transported to the storage location. Metering of the flow could be challenging due to the presence of impurities as well as unusual physical properties of the CO2 with impurities. The metering accuracy must be within the range of ±1.5% by mass according to the European Union Emission Trading Scheme (EU ETS) regulations. However, no investigations have been performed to evaluate the performance of flowmeters with pressurized CO2 at operational CCS conditions. The goal of project is to investigate the performance of Coriolis mass flowmeter with high CO2 content mixtures. Specific objectives of the project include: • To study the effect of impurities on the accuracy of the Coriolis flow meter. • To investigate the performance of Coriolis flow meter at conditions likely to happen in the CCS operations. • Evaluation of costs for the deployment of Coriolis flow meter in CCS operations.

  • This poster on the UKCCSRC Call 2 project Multiscale Characterisation of CO2 Storage in the United Kingdom was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-197. We combine pore scale digital rock physics, reservoir condition special core analysis, and reservoir simulation to evaluate the performance of CO2 storage for the major target storage regions of the UK. Key objectives: • Develop a dataset of relative permeability and residual trapping for major storage targets in the UK (Fig. 1), obtained experimentally at reservoir conditions • Identify the contribution of pore scale rock morphology to multiphase flow dynamics and dissolution trapping • Use the data in reservoir simulations to update dynamic capacity estimation for UK reservoirs

  • EngD thesis describing experiments carried out using a variety of sandstones. This thesis investigates the microbial response to 10 ppm oxygen and 100ppm oxygen in experiments representing deep saline aquifer conditions. All experiments were conducted using sandstone, artificial groundwater and a microbial community designed to represent conditions found within deep saline aquifers. A microbial community, containing sulphate reducing bacteria, was isolated and identified from sandstone samples and then used in the experiments. The experiments were batch microcosms, a high pressure bioreactor and column flow experiments. Analyses of these experiments were conducted through gas analysis, water chemistry and DNA analysis from microbial communities.