Creation year

2008

194 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Representation types

Update frequencies

Scale

Regions

GEMET keywords

From 1 - 10 / 194
  • This dataset contains fossil and modern pollen data collated during a workshop held in the UK in 2008 as part of the NERC (Quantifying and Understanding the Earth System) QUEST programme. The 96 sampling sites are located from 24°E (western Ukraine and Belarus) to easternmost Siberia, and lie north of latitude 40°N. The sample ages range from 21ka to present and are assigned to 1,000 year time slices. The dataset has been checked for consistent taxonomy and a redundancy-free taxonomy has been produced. Full details about this dataset can be found at https://doi.org/10.5285/6aeba247-52d1-4e84-949f-603742af40c1

  • The Airborne Research & Survey Facility (ARSF, formerly Airborne Remote Sensing Facility) is managed by NERC Scientific Services and Programme Management. It provides the UK environmental science community, and other potential users, with the means to obtain remotely-sensed data in support of research, survey and monitoring programmes. The ARSF is a unique service providing environmental researchers, engineers and surveyors with synoptic analogue and digital imagery of high spatial and spectral resolution.The NEODC holds the entire archive of Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) data acquired by the NERC ARSF. High-resolution scanned digital versions of the entire collection of analogue photographs are now also available as well as selected LiDAR-derived elevation and terrain models for selected sites flown using the sensor.

  • This dataset contains Aerosol Optical Thickness (AOT) data, collected at Chilbolton Facility for Atmospheric and Radio Research as part of the Network for Calibration and Validation of EO data (NCAVEO) 2006 Field Campaign. Measurements were taken every 15 minutes using a Cimel CE318-2™ sun photometer, which is part of AERONET. For more information on the dataset please see the dataset's metadata file in linked documentation.

  • "To what extent was the Little Ice Age a result of a change in the thermohaline circulation?" project. This was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Joint International Round - NE/C509507/1 - Duration 1 Aug 2005 - 31 Jul 2008) led by Dr Tim Osborn of the University of East Anglia, with co-investigators at the University of East Anglia and Royal Netherlands Meteorology Institute. The dataset contains fresh water hosing model output from the CMIP experiment run by the HadCM3 model. The freshwater was added to the North Atlantic basin between latitudes 50°N and 70°N.

  • Data identifying landscape areas (shown as polygons) attributed with geological names. The scale of the data is 1:625 000 providing a simplified interpretation of the geology. Onshore coverage is provided for all of England, Wales, Scotland, the Isle of Man and Northern Ireland. Data are supplied as four themes: bedrock, superficial deposits, dykes and linear features (faults). Bedrock geology describes the main mass of solid rocks forming the earth's crust. Bedrock is present everywhere, whether exposed at surface in outcrops or concealed beneath superficial deposits or water bodies. Geological names are based on the lithostratigraphic or lithodemic hierarchy of the rocks. The lithostratigraphic scheme arranges rock bodies into units based on rock-type and geological time of formation. Where rock-types do not fit into the lithostratigraphic scheme, for example intrusive, deformed rocks subjected to heat and pressure resulting in new or changed rock types; then their classification is based on their rock-type or lithological composition. This assesses visible features such as texture, structure, mineralogy. Superficial deposits are younger geological deposits formed during the most recent geological time; the Quaternary. These deposits rest on older rocks or deposits referred to as bedrock. The superficial deposits theme defines landscape areas (shown as polygons) attributed with a geological name and their deposit-type or lithological composition. The dykes theme defines small, narrow areas (shown as polygons) of a specific type of bedrock geology; that is igneous rocks which have been intruded into the landscape at a later date than the surrounding bedrock. They are presented as an optional, separate theme in order to provide additional clarity of the bedrock theme. The bedrock and dykes themes are designed to be used together. Linear features data (shown as polylines) represents geological faults at the ground or bedrock surface (beneath superficial deposits). Geological faults occur where a body of bedrock has been fractured and displaced by large scale processes affecting the earth's crust (tectonic forces). The faults theme defines geological faults (shown as polylines) at the ground or bedrock surface (beneath superficial deposits). All four data themes are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are delivered free of charge under the terms of the Open Government Licence.

  • The Aircraft Meteorological Data Relay (AMDAR) measurements describe hourly observations from aircraft across the world during all stages of flight. The observations cumulate into 160,000 reports a day, giving measurements of parameters such as aircraft characteristics, wind speed and direction, degree of turbulence, and air temperature. The data are collected by observation stations worldwide and transmitted within the AMDAR message, which prior to March 1992, was known as ASDAR(Aircraft to Satellite Data Relay).

  • Data identifying landscape areas (shown as polygons) attributed with geological names. The scale of the data is 1:25 000 scale providing bedrock geology. Onshore coverage is partial and BGS has no intention to create a national coverage at this scale. Areas covered are essentially special areas of 'classic' geology and include Llandovery (central Wales), Coniston (Lake District) and Cuillan Hills (Isle of Skye). Bedrock geology describes the main mass of solid rocks forming the earth's crust. Bedrock is present everywhere, whether exposed at surface in outcrops or concealed beneath superficial deposits or water bodies. The bedrock geology of Great Britain is very diverse and includes three broad classes based on their mode of origin: igneous, metamorphic and sedimentary. The data includes attribution to identify each rock type (in varying levels of detail) as described in the BGS Rock Classification Scheme (volumes 1-3). The bedrock has formed over long periods of geological time, from the Archean eon some 7500 million years ago, to relatively young Pliocene, 58 million years ago. The age of the rocks is identified in the data through their BGS lexicon name (published for each deposit at the time of the original survey or subsequent digital data creation). For stratified rocks i.e. arranged in sequence, this will usually be of a lithostratigraphic type. Other rock types for example intrusive igneous bodies will be of a lithodemic type. More information on the formal naming of UK rocks is available in the BGS Lexicon of Named Rock Units. The bedrock theme defines landscape areas (shown as polygons). The data are attributed with geological names and rock type descriptions. Geological names are based on the lithostratigraphic or lithodemic hierarchy. The lithostratigraphic scheme arranges rock bodies into units based on rock-type and geological time of formation. Where rock-types do not fit into the lithostratigraphic scheme, for example intrusive, deformed rocks subjected to heat and pressure resulting in new or changed rock types; then their classification is based on their rock-type or lithological composition. This assesses visible features such as texture, structure, mineralogy. The data are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are available under BGS data licence.

  • "Improving our ability to predict rapid changes in the El Nino Southern Oscillation climatic phenomenon" project, which was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00443 - Duration 1 Jan 2004 - 30 Sep 2007) led by Prof Alexander Tudhope of the University of Edinburgh, with co-investigators at the Scottish Universities Environment Research Centre, Bigelow Laboratory for Ocean Sciences, and the University of Reading. This dataset collection contains meteorology and ocean model outputs from the GENIE-1 EMIC model. The objective was to use a combination of palaeoclimate reconstruction from annually-banded corals and the fully coupled HadCM3 atmosphere-ocean general circulation model to develop an understanding of the controls on variability in the strength and frequency of ENSO, and to improve our ability to predict the likelihood of future rapid changes in this important element of the climate system. To achieve this, we targeted three periods:0-2.5 ka: Representative of near-modern climate forcing; revealing the internal variability in the system.6-9 ka: a period of weak or absent ENSO, and different orbital forcing; a test of the model's ability to capture externally-forced change in ENSO.200-2100 AD: by using the palaeo periods to test and optimise model parameterisation, produce a new, improved, prediction of ENSO variability in a warming world. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • The Convective Storm Initiation Project (CSIP) aimed to further the understanding of the mechanisms responsible for the initiation of precipitating convection in the maritime environment of southern England; i.e. to understand why convective clouds form and develop into precipitating clouds in a particular location. The project was centred on the 3 GHz (CAMRa) and 1275 clear-air (ACROBAT) radars at Chilbolton and used a number of the new UK Universities' Facility for Atmospheric Measurement (UFAM) mobile instruments. This dataset includes measurements of wind speeds and wind directions and aerosol concentrations.