Creation year

2008

220 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 10 / 220
  • This project aimed to investigate whether the present chronological data for late Mousterian sites in Europe are biasing our perception of Neanderthal populations by making them appear more cold-adapted than the incoming anatomically modern Early Upper Palaeolithic humans. In this study we focused on the part of the Neanderthal world that experienced the most continental climatic environments - namely, European Russia north of the Black Sea - for it is in such a region that the environmental preferences, in particular tolerance to temperature, are most discernible. By applying a series of cross-validated non-14C chronological methodologies (OSL, TL, palaeomagnetic intensity, and tephrostratigraphy) to late Middle Palaeolithic assemblages the project sought to identify spatial and temporal patterning which, when correlated with local environmental proxies and wider climate data, would provide a better understanding of Neanderthal climate tolerances. The project has produced a suite of new age determinations from a selection of archaeological sites that had previously undergone investigation and which were available to sample without requiring new excavations; the corresponding data on the cultural, lithic and environmental associations of the new age measurements derive mostly from earlier existing studies.

  • Data identifying landscape areas (shown as polygons) attributed with geological names and rock type descriptions. The scale of the data is 1:25 000 scale. Onshore coverage is partial and BGS has no intention to create a national coverage at this scale. Areas covered are essentially special areas of 'classic' geology and include Llandovery (central Wales), Coniston (Lake District) and Cuillan Hills (Isle of Skye). Superficial deposits are the youngest geological deposits formed during the most recent period of geological time, the Quaternary, which extends back about 2.58 million years from the present. They lie on top of older deposits or rocks referred to as bedrock. Superficial deposits were laid down by various natural processes such as action by ice, water, wind and weathering. As such, the deposits are denoted by their BGS lexicon name, which classifies them on the basis of mode of origin (lithogenesis) with names such as, 'glacial deposits', 'river terrace deposits' or 'blown sand'; or on the basis of their composition such as 'peat'. Most of these superficial deposits are unconsolidated sediments such as gravel, sand, silt and clay. The digital data includes attribution to identify each deposit type (in varying levels of detail) as described in the BGS Rock Classification Scheme (volume 4). The data are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are available under BGS data licence.

  • The Radio Acoustic Sounding System (RASS) messages data describe hourly observations from around 120 stations distributed globally. The observations, which are later transmitted in reports, give measurements of parameters such as wind speed, and temperature. The data are collected by observation stations worldwide and transmitted within the RASS message.

  • Between 2001 and 2003 BGS received approximately 1400 1:25 000 paper maps and associated card index from the Office of the Deputy Prime Minister (now Department for Communities and Local Government (CLG)). The maps, originally compiled by the Minerals Division of the Ministry of Housing and Local Government (CLGs historic predecessor), contain hand drawn boundaries for permitted, withdrawn and refused mineral planning permissions, and worked ground. They also contain hand drawn boundaries for land use at each site. These 'MHLG' maps show information collated from the 1940s (retrospectively to 1930) to the mid 1980s. The index cards provide supplementary information regarding name, operator, dates and relevant local authority. Data depicted on the maps are for England only and include; [a] all planning appeals, departures and called in cases whether permitted or refused; [b] all planning permission and refusal data for various local authority areas which were obtained by Departmental officials through visits to authorities in a staged programme spread over many years. Priority was placed on areas that were giving rise to then current casework issues thus at the time when the maintenance of the maps ended (mid 1985), some authority information had been updated recently but other areas had not been visited for many years. [c] land use present at each site. Categories include: derelict areas, restored quarries (filled and unfilled), tip heaps and spoil heaps, and wet areas. The variable completeness of the data sets should be kept in mind when this material is being used. Land use polygons have been digitised from the MHLG maps and attribute information has been provided from the map legend and the appropriate card in the card index. The principal aim of the data is to show land use present in areas of land that have been affected by the extraction of minerals.

  • Data identifying landscape areas (shown as polygons) attributed with geological names. The scale of the data is 1:25 000 scale. Onshore coverage is partial and BGS has no intention to create a national coverage at this scale. Areas covered are essentially special areas of 'classic' geology and include Llandovery (central Wales), Coniston (Lake District) and Cuillan Hills (Isle of Skye). Data are supplied as five themes: bedrock, superficial deposits, mass movement, artificial ground and linear features. Bedrock geology describes the main mass of solid rocks forming the earth's crust. Bedrock is present everywhere, whether exposed at surface in outcrops or concealed beneath superficial deposits or water bodies. The bedrock theme defines landscape areas (shown as polygons) attributed with geological names. Geological names are based on the lithostratigraphic or lithodemic hierarchy. The lithostratigraphic scheme arranges rock bodies into units based on rock-type and geological time of formation. Where rock-types do not fit into the lithostratigraphic scheme, for example intrusive, deformed rocks subjected to heat and pressure resulting in new or changed rock types; then their classification is based on their rock-type or lithological composition. This assesses visible features such as texture, structure, mineralogy. Superficial deposits are younger geological deposits formed during the most recent geological time; the Quaternary. These deposits rest on older rocks or deposits referred to as bedrock. The superficial deposits theme defines landscape areas (shown as polygons) attributed with a geological name and their deposit-type or lithological composition. Mass movement describes areas where deposits have moved down slope under gravity to form landslips. These landslips can affect bedrock, superficial or artificial ground. Mass movement deposits are described in the BGS Rock Classification Scheme Volume 4. However the data also includes foundered strata, where ground has collapsed due to subsidence (this is not described in the Rock Classification Scheme). Caution should be exercised with this data; whilst mass movement events are recorded in this layer, due to the dynamic nature of occurrence significant changes may have occurred since the data was released, as such it should be viewed as a snapshot in time (data should be regarded as at 2008). Artificial (man-made) theme (shown as polygons) indicates areas where the ground surface has been significantly modified by human activity. Whilst artificial ground may not be considered as part of the 'real geology' of bedrock and superficial deposits it does affect them. Artificial ground impacts on the near surface ground conditions which are important to human activities and economic development. Due to the constantly changing nature of land use and re-use/redevelopment, caution must be exercised when using this data as it represents a snapshot in time rather than an evolving picture hence the data may become dated very rapidly. Linear features (shown as polylines) represent geological structural features e.g. faults, folds or landforms e.g. buried channels, glacial drainage channels at the ground or bedrock surface (beneath superficial deposits). Linear features are associated most closely with the bedrock theme either as an intrinsic part of it for example marine bands or affecting it in the case of faults. However landform elements are associated with both bedrock and superficial deposits. All five data themes are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are available under BGS data licence. Another batch of tiles was added to the data in 2012 to bring the total to 167 for this version 2 release.

  • MarQUEST was led by Prof Andrew Watson (UEA), with 15 co-investigators at UEA/BAS, the Universities of Southampton, Essex, and Reading, and from the Plymouth Marine Laboratory and Proudman Oceanographic Laboratory. This dataset contains chemical species measurements for 1998-2007 calculated from SeaWiFS/SeaStar Level 3 products. QUEST scientists cooperated in comparing various models, and examining more fundamental (physiological) approaches to understanding the planktonic ecoystem. MarQUEST also developed a module to simulate coastal ecosystems, usable in global ocean biogeochemical simulations. Finally, the project team generated an accurate physical simulation of the North Atlantic guided by data assimilation, into which ecosystem simulations can be embedded. This allows the variation in air-sea fluxes of gases (CO2, oxygen and dimethyl sulphide) from ocean to atmosphere to be quantified for the contemporary period.

  • As part of the Centre for Ecology and Hydrology Land Cover 2007 Pilot Project, a reconnaissance survey was undertaken on 12th May 2006 in a 60 x 60 km area (bounded by Ordnance Survey National Grid Reference X = 400000 to 460000, Y = 095000 to 155000) which included the Network for Calibration and Validation in Earth Observation (NCAVEO) test site. A recording tablet device was used for acquiring ground data for sample points in the defined area. The dataset consists of an ESRI shape file of point data, containing all the points recorded on a tablet device. Each point has a British National Grid X and Y co-ordinate and a class code. The dataset has not been checked or edited yet and a few of the records will be erroneous. The most obvious errors will be two or more points with identical locations but different codes, the final code will be the correct one. Some of the points for Salisbury Plain lie just outside the test area boundaries. A key to abbreviations used for field recording is also included and a list of thematic land cover classes and their codes to aid field reconnaissance, as used for Land Cover Map 2000.

  • This dataset consists of metal concentrations (aluminium, arsenic, cadmium, chromium, copper, lead, manganese, mercury, molybdenum, nickel, selenium, titanium and zinc) measured from soils sampled across Great Britain in 2007. The Countryside Survey is a unique study or 'audit' of the natural resources of the UK's countryside. The sample sites are chosen from a stratified random sample, based on a 15 by 15 km grid of GB. Surveys have been carried out in 1978, 1984, 1990, 1998 and 2007 by the Centre for Ecology & Hydrology, with repeated visits to the majority of squares. The countryside is sampled and surveyed using rigorous scientific methods, allowing us to compare new results with those from previous surveys. In this way we can detect the gradual and subtle changes that occur in the UK's countryside over time. In addition to soil data, habitat areas, vegetation species data, linear habitat data, and freshwater habitat data are also gathered by Countryside Survey Full details about this dataset can be found at https://doi.org/10.5285/826b0829-7ab5-4e22-822f-ee3a137896a9

  • A superficial thickness model covering England Scotland and Wales. The model is derived by direct modelling (natural neighbour interpolation) of BGS Borehole records and BGS Digmap. For the purposes of modelling, superficial deposits include sediments deposited during the Quaternary, subsequent Holocene rivers and coastal systems and also modern anthropogenic material. i.e. deposits that are less than 2.6 million years old. Grids are overprinted with a minimum value so that areas where no bore data is present, but superficial deposits are known to occur are given a minimum 1.5m thickness. The superficial thickness model has been created as baseline datasets for the BGS Information Products programme. The model provides only a simple, mathematical interpretation of reality with some phantom points that improve the model mainly in valley areas where lack of data was given different results as those expected by a geological interpretation of the area. The complexity of Superficial deposits in Great Britain is such that it is only possible to model indicative values of thickness and elevation. The models should never be used as a substitute for thorough site investigation.