Creation year

2018

520 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Scale
Resolution
From 1 - 10 / 520
  • The permeability of single fractures, pairs of conjugate fracture pairs, and 256 fracture networks, is numerically computed using a multi-scale permeability method. For fracture networks, the geometries of the files are contained in 3dm files. The results are presented in a series of json text files. The method to compute permeabilities is described in the PhD thesis entitled "Multi-scale modelling of thermohydro-mechanical-chemical processes in fractured rocks" by Philipp Lang, Imperial College London, supervised by Adriana Paluszny and Robert W. Zimmerman.

  • Direct geological observations made during field work, tied to positional information collected by hand-held GPS.

  • Radiographic images of pyrope samples synthesised at pressures of 4-15 GPa, all collected at 2.5GPa and temperatures from 773 to 1573K. The samples are deformed sinusoidally at strains of up to 5 mimcrostrain and periods from 10s to 360s – 10 frames of images were collected per cycle for a total of 1000 frames. Data collected at NSLS X17B2 using the deformation-DIA press until its closure, thereafter collected at the replacement beamline at APS using the same press. These data are currently being prepared for publication. Similar images were collected on polycrystalline San Carlos Olivine samples either dry or wet to investigate the effect of water on grain boundary strength and the data are also archived here.

  • This dataset contains surface temperature measurements from the University of Leeds' two Heitronics KT15.85 infra red radiative temperature sensors mounted on board the Swedish Icebreaker Oden durning Arctic Cloud Summer Expedition (ACSE). ACSE took place in the Arctic during summer 2014. These measurements were used to complement a suite of other observations taken during the cruise. Those of the UK contribution, as well as selected other data, are available within the associated data collection in the Centre for Environmental Data Analysis (CEDA) archives. Other cruise data may be available in the NOAA ACSE and The Bolin Centre for Climate Research SWERUS (SWEdish-Russian-US) holdings - see online resources linked to this record. Both instruments were mounted to point to starboard, but instrument 1 pointing 45 degrees forward and instrument 2 pointing 45 degrees aft, taking raw measurements at 1Hz. The data contain both the raw measured temperature (t_meas) and a corrected value, adjusted for reflection of thermal radiation from surface. The correction follows that developed by Phil Hignett for a similar sensor on the UK Met Office C130 aircraft : MRF Tech note 28, 1988. The Arctic Cloud Summer Expedition (ACSE) was a collaboration between the University of Leeds, the University of Stockholm, and NOAA-CIRES. ACSE aimed to study the response of Arctic boundary layer cloud to changes in surface conditions in the Arctic Ocean as a working package of the larger Swedish-Russian-US Investigation of Climate, Cryosphere and Carbon interaction (SWERUS-C3) Expedition in Summer 2014. This expedition was a core component to the overall SWERUS-C3 programme and was supported by the Swedish Polar Research Secretariat. ACSE took place during a 3-month cruise of the Swedish Icebreaker Oden from Tromso, Norway to Barrow, Alaska and back over the summer of 2014. During this cruise ACSE scientists measured surface turbulent exchange, boundary layer structure, and cloud properties. Many of the measurements used remote sensing approaches - radar, lidar, and microwave radiometers - to retrieve vertical profiles of the dynamic and microphysical properties of the lower atmosphere and cloud. The UK participation of ACSE was funded by the Natural Environment Research Council (NERC, grant: NE/K011820/1) and involved instrumentation from the Atmospheric Measurement Facility of the UK's National Centre for Atmospheric Science (NCAS AMF). This dataset collection contains data mainy from the UK contribution with some additional data from other institutes also archived to complement the suite of meteorological measurements.

  • HadUK-Grid is a collection of gridded climate variables derived from the network of UK land surface observations. The data have been interpolated from meteorological station data onto a uniform grid to provide complete and consistent coverage across the UK. These data at 1km resolution have been averaged across a set of discrete geographies defining UK river basins consistent with data from UKCP18 climate projections. The dataset spans the period from 1862 to 2017, but the start time is dependent on climate variable and temporal resolution. The grids are produced for daily, monthly, seasonal and annual timescales, as well as long term averages for a set of climatological reference periods. Variables include air temperature (maximum, minimum and mean), precipitation, sunshine, mean sea level pressure, wind speed, relative humidity, vapour pressure, days of snow lying, and days of ground frost. This data set supersedes the UKCP09 gridded observations. Subsequent versions may be released in due course and will follow the version numbering as outlined by Hollis et al. (2018, see linked documentation). The primary purpose of these data are to facilitate monitoring of UK climate and research into climate change, impacts and adaptation. The datasets have been created by the Met Office with financial support from the Department for Business, Energy and Industrial Strategy (BEIS) and Department for Environment, Food and Rural Affairs (DEFRA) in order to support the Public Weather Service Customer Group (PWSCG), the Hadley Centre Climate Programme, and the UK Climate Projections (UKCP18) project. The data recovery activity to supplement 19th and early 20th Century data availability has also been funded by the Natural Environment Research Council (NERC grant ref: NE/L01016X/1) project "Analysis of historic drought and water scarcity in the UK". The dataset is provided under Open Government Licence.

  • Zr/Rb, Ca/Ti, Rb/K ratios against depth (0.112 m to 62.686 m) and age ( 366 to 150190 yrs). NERC grant, NE/D012996/1, abstract Lake Tana, in the highlands of northern Ethiopia, is the source of the Blue Nile, one of the world's great rivers. Surprisingly, very little is known about the age and history of this lake: one estimate from the 1930's is that it was formed 10,000 years ago by a lava dam. Similarly, little is known about the climatic history of the wider region that comprises the Blue Nile headwaters, despite the fact that the Nile has long been recognized as critical to the resources of ancient and modern Egypt. New geophysical and core data, obtained by us in October 2003 and September 2004 with NERC support, show that the lake may be at least 40,000 years old. Our new data also show that the lake dried out at around 16,000 years ago, and almost certainly at apparently regular intervals during the later stages of the last Ice Age. It is possible that the lake dried because of intense droughts lasting one or two hundred years, and that the droughts were caused by disruption of Africa's monsoon climate when iceberg-laden meltwater from North America flooded the North Atlantic - the Heinrich events. In this new PalaeoTana Project, we aim to test these hypotheses by drilling a sediment core, up to 100m in length, from the northern basin of Lake Tana, in about 10m water depth, and about 2km from shore. The core will be scanned at high resolution using X-ray fluorescence, X-ray and colour imagery, geophysical and magnetic core-scanning technology, without damaging the sedimentary components. The resulting datasets will identify past desiccation events, which will be investigated in detail and interpreted by comparison to sediments of the known drying-out event at 16,000 years ago. Dating the sediments by appropriate methods including luminescence, tephrochronology, and Argon-Argon dating will allow precise estimates of the timing and duration of the drought events. The relative timing of these events in comparison with abrupt climatic events in ocean cores (especially Heinrich events), and in other continental records, will allow inferences about the global- scale mechanisms of abrupt climate change. The data can also be used to test climate models, and thus to help judge the accuracy of model-predicted abrupt climate change in the future. A long core record of past climate and environment from this part of Africa would have major significance for understanding both regional environmental change, because of the influence of the Nile on NE Africa and the eastern Mediterranean, and global climate. It will contribute to understanding how future changes in ocean temperature and circulation will affect global climate, especially in the heavily populated monsoon regions of Africa and Asia. It will also have significance for understanding the later stages of human evolution in and dispersal out of Africa, by providing a record of the environmental changes that influenced early human populations and their water, plant and hunting resources.

  • Pulleniatina sample weights U1486. Grant abstract: This grant supports the participation of UK scientists Professor Paul Pearson in Expedition 363 of the International Ocean Discovery Program which plans to study the history of the 'Indo-Pacific Warm Pool' over the last 15 million years. It includes costs to cover his time while on board ship (2 months at sea) and post-expedition scientific study. Sea surface temperatures exceed 28oC across a huge area of the tropical western Pacific and Indian Oceans. Known as the Indo-Pacific Warm Pool (IPWP), this area is fundamental to the global atmospheric circulation and hydrologic cycle. The IPWP is intensifying with global warming, but modelling its likely future is challenging. Expedition n363 aims to study its temperature and climatic history over the past 15 million years, including through glacial to interglacial climate cycles and back to the globally warm Miocene epoch. Understanding its past history will help determine if its current temperature is near to its likely maximum or if global warming can cause much greater intensification in the future. Professor Pearson is a specialist in the study of microscopic fossils called planktonic foraminifera. He will study the evolution of the ocean plankton in the region over the study period, in relation to climatic change and sea level fluctuations which greatly affect the distribution of land masses and shallow seas and hence ocean current patterns. The foraminifera are also used to determine the age of the sediments drilled (called biostratigraphy) and providing other expedition scientists with a high quality planktonic foraminifer biostratigraphy will be one of the main features of this project. In additional there is a particular focus on an evolutionary lineage of foraminifera called Pulleniatina which has considerable untapped potential for stratigraphic work and also as a case study in the detailed speciation and extinction of a group of plankton. Study of this group will be facilitated by the large populations and varying morphology exhibited by them and because, like snails, they can be left or right handed and the pattern of coiling through time and across space is highly complex and potentially very informative.

  • In this submission we Include three data sets collected as part of a NERC Urgency programme. Data were collected from a key field site within the Marlborough Fault Zone (MFZ), New Zealand. The Mw 7.8 Kaikoura Earthquake of 14th November 2016 was characterised by a surprising degree of spatial complexity in the surface displacement field in the Marlborough region, South Island, New Zealand. This complexity includes movement on up to 12 faults, besides a high degree of variability in apparent slip along strike of individual faults over relatively short distances. The Urgency programme included rapid collection of Terrestrial Laser Scanning (TLS), Structure from Motion (SfM) and Global Navigation Satellite System (GNSS) data immediately after this event. We include data for one of our field sites for which data collection succeeded, and processing has been completed. For a summary of the key initial findings from this data set, see the following EGU 2018 Abstract and summary: https://meetingorganizer.copernicus.org/EGU2018/EGU2018-6847.pdf

  • BGS GeoSure identifies, at 1:50 000 scale, areas of susceptibility and considers the following specific hazard processes that can occur in Great Britain: 1. Shrink–Swell: Swelling clays change in volume due to changes in water content; this can lead to movements (up or down) in the upper two metres of the ground, which may affect property foundations. 2. Landslides (Slope Instability): Slope instability occurs when particular slope characteristics combine to make the slope unstable. Downslope movement of materials (landslide) may cause damage to foundations, services or impact damage to buildings. 3. Soluble Rocks (Dissolution): Ground dissolution occurs when certain types of rocks, containing layers of soluble material, get wet and the soluble material dissolves. This can cause underground cavities to develop. These cavities reduce support to the ground above and can lead to a collapse of overlying rocks. 4. Compressible Ground: Some types of ground may contain layers of very weak materials such as peat or some types of poorly structured clays. These may compress if loaded by overlying structures, or if the groundwater level changes. This compression may result in depression of the ground surface, potentially disturbing foundations and services. 5. Collapsible Deposits: Some soils may collapse when a load (building or road traffic) is placed on them, especially if they become saturated. Such collapse may cause damage to overlying property or services. 6. Running Sand: Some rocks and soils can contain loosely packed sandy layers that can become fluidised by water flowing through them. Such sands can ‘run’ (flow), potentially removing support from overlying buildings and causing damage.

  • Results of microbial water quality conducted in Kwale County, Kenya from 2015 to 2017 by University of Oxford and Universitat Politecnica de Catalunya as part of the Gro for GooD project (https://upgro.org/consortium/gro-for-good/). Water samples from 101 locations (including 31 open wells, 27 deep boreholes, 21 shallow boreholes with handpumps, 15 covered dug wells with handpumps, and 10 surface water sites. This data set contains results for microbial risk parameters including Escherichia coli, thermotolerant coliforms (TTCs) and tryptophan-like fluorescence (TLF). Most samples also have accompanying data on pH, conductivity, water temperature and turbidity. Duplicate and replicate samples are included and indicated by 'Dup' or 'Rep'. Duplicates samples were collected from the same water points within minutes of each other and laboratory replicates were different aliquots from a single sample. Risk classifications of E. coli and TTC data are based on the World Health Organisation's microbial water quality risk grading scheme. Manufacturer recommended sampling protocols were used. The sampled water points were in regular use and boreholes were flushed with either an electric pump or hand-pumping prior to sample collection. Samples from the open wells were drawn with buckets and rope, which were designated for each site and were rinsed prior to sampling to minimise secondary contamination. Daily field and laboratory blank samples were analysed to confirm no secondary contamination or cross-contamination between sites. For the tryptophan-like fluorescence (TLF) measurement, approximately three litres of unfiltered water were pumped or poured into a stainless-steel container (kept in a black box to prevent ambient light from interfering). The container was cleaned with ethanol and triple-rinsed with sample water prior to each measurement. Measurement was conducted for approximately 3 minutes and the median result was used. The probe and its sensor window were kept clean. Air bubble formation on the sensor window was avoided. For the bacteria sampling, sterile purpose-made bags were used for sample collection and immediately stored in a cooler box with ice-packs. They were transported and processed to begin incubation within two to five hours. Gro for GooD: Groundwater Risk Management for Growth and Development