Keyword

Carbon

49 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Resolution
From 1 - 10 / 49
  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland through to construction. The study yielded invaluable knowledge and the resulting material are available for download here. This section of the report contains the cost estimate for the End-to-End CCS chain for the purposes of providing potential developers of CCS projects with indicative cost information regarding capital expenditure, operating costs and decommissioning/ abandonment costs. One of the key objectives of the FEED phase of the UKCCS Demonstration Competition was to increase the cost certainty for the overall project. During development of the Outline Solution, costs were estimated to an accuracy of -30% to +50%. Through the design and project development across the various Consortium workstreams (as outlined in the previous sections of this report), it has been possible to refine this accuracy and increase the cost certainty of the indicative core capital costs to approximately -12%/+15% accuracy. The appropriate summary section from the Feed Close Out Report can be downloaded as a PDF (CCS project costs.pdf). The main text of the FEED Close Out Report, together with the supporting appendix for this section can be downloaded as PDF files. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/scottish_power/ccs_costs/ccs_costs.aspx

  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland through to construction. The study yielded invaluable knowledge and the resulting material are available for download here. This section of the report provides a summary of key decisions and design changes made during FEED that have resulted from the development of the End-to-End solution and the design works conducted by each of the Consortium Partners. The information described in this section captures the design decisions and changes that have had the most prominent impact on the End-to-End Basis of Design. For each key design change/decision, the background, options considered and the final outcome is described. The ScottishPower CCS Consortium Decision Register can be found in PDFs . The appropriate summary section from the Feed Close Out Report can be downloaded as a PDF (Key FEED decisions.pdf). The main text of the FEED Close Out Report, together with the supporting appendix for this section can be downloaded as PDF files. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/scottish_power/feed_decisions/feed_decisions.aspx

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This chapter contains design philosophy documents which were produced to ensure a common approach to the design of all aspects of the CCS project, addressing overall project lifecycle and the interface between the Carbon Capture Plant and the Power Station. Some of the key issues concerning the design and integration of a CCS development are: Power plants have been designed for many years to operate flexibly in response to the demands of the electricity network. The CCS plant technology is closer to process plant technology which is not usually designed for such flexible operation, and this will provide a key challenge during the detailed design process to provide the required flexibility of operation; Assessment of various cooling technologies for the power station and carbon capture plant shows that direct water cooling is the Best Available Technology in terms of Environmental Impact; Significant parts of the existing cooling water infrastructure can be re-used; There is potential to advantageously interface steam and cooling systems between the power plant and CCS plant; Venting, and the consequent cooling, of CO2 for pressure relief or operational reasons raises issues with lack of buoyancy and dispersion which require significant further work. Further supporting documents for chapter 4 of the Key Knowledge Reference Book can be downloaded. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/e_on_feed_/project_design/project_design.aspx

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This Key Knowledge Reference Book is the result of the early stages of a Front End Engineering and Design (FEED) study to add a post-combustion Carbon Capture and Storage (CCS) facility to a new supercritical coal fired power plant at Kingsnorth following the award of a FEED contract with the Department of Energy and Climate Change (DECC) in March 2010. This study constitutes the first phase of a 3-phase approach to FEED adopted by E.ON UK. The Kingsnorth CCS Project consists of two 800MW power generating units at Kingsnorth power station, a 300MW (net) post combustion carbon capture plant integrated into the power plant with associated dehydration and compression facilities, a 36inch pipeline for transportation of CO2 to the Hewett gas field in the southern North Sea and a new platform at this field with associated injection facilities and wells. The Key Knowledge Reference Book is publicly available to all CCS project developers and other interested parties to ensure the lessons learned from this FEED are disseminated as widely as possible to advance the roll-out of Carbon Capture and Storage. This Key Knowledge Reference Book comprises information provided in the following structure: Chapter: 1 Executive Summary. 2 Content. 3 Table of Acronyms. 4 Project Design. 5 Technical Design - Carbon Capture and Compression Plant. 6 Technical Design - Pipeline and Platform. 7 Technical Design - Wells and Storage. 8 Health and Safety. 9 Environment and Consents. 10 Project Management Reports. Summary commentary on each of the chapters is provided to give both context to the information supplied and to pull out key areas of learning in each section. The Key Knowledge Reference Book is available for download and supporting materials for each chapter are available. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/e_on_feed_/executive_summ/executive_summ.aspx

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This chapter presents the results of studies into the undersea storage reservoir for CO2, in the Lower Bunter sandstone of the depleted Hewett natural gas field, the design recommendations for new wells and recommendations for abandonment of existing wells. The study addresses the following areas; Storage Reservoir integrity and capacity; Construction and completion of wells; CO2 properties and injectivity; Abandonment of existing and new wells; Monitoring; Hazard Identification (HAZID) and Risk Assessment. Some of the key aspects of the Wells and Storage technical design are; Wells that have already been abandoned using conventional methods pose a risk of future leakage to the surface and thereby compromising the integrity of the CO2 store; Data acquisition can be difficult: ensure that all required data sets are identified and make requests as early as possible to ensure quality data is obtained resistant standards; The CO2 equation of state and phase diagram is paramount in designing the injection process. Temperature and pressure of the CO2 must be carefully specified to avoid uncontrolled condensation or vaporisation; Many standard components and materials used in the offshore industry are suitable for use in CO2 flowing regime injection applications. Particular attention must be paid to corrosion resistance and longevity in a CO2 environment; For drilling injection wells into a depleted hydrocarbon reservoir, the principal challenge is drilling into low pore pressures, whilst minimising formation damage. Further supporting documents for Chapter 7 of the Key Knowledge Reference Book can be downloaded. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/e_on_feed_/storage/storage.aspx

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This chapter is devoted to the transportation and injection infrastructure requirements of the Kingsnorth Carbon Capture and Storage development. This encompasses a 36 inch (outside diameter) pipeline which runs onshore for approx 10 km and offshore in the Southern North Sea for 260 km, a platform in the vicinity of the Hewett field location, and appropriate facilities both for the conditioning of CO2 before pipeline entry and the processing of the CO2 stream prior to injection into the sequestration site. The chapter highlights in particular the following areas:- Critical assumptions; Platform Concept Selection; Transport Solution Selection; Pipeline Key Issues; Pipeline Pre-Commissioning; Temperature; Emergency Shutdown; Personnel Safety; Venting; Flow Assurance Modelling. Throughout the execution of the work described in this chapter significant opportunity was taken to ensure that the interfaces from capture (and compression) to pipeline/platform and to wells/storage were managed closely. This was achieved by cross system interface management meetings organized to consider interface issues and to compare issues raised in separate HAZIDs. The purpose of conceptual design has been to identify the problems to be addressed comprehensively by the next stage of FEED and this suite of reports provides valuable insights to the challenges faced. All aspects of establishing an agreed philosophy for design and operation of a storage and transport system for CCS begin with understanding what the initial CO2 flow conditions will be at the interface between the well perforations and the reservoir (i.e. at the sandstone face at the bottom of the well). Further supporting documents for chapter 6 of the Key Knowledge Reference Book can be downloaded.

  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland through to construction. The study yielded invaluable knowledge and the resulting material are available for download here. This section of the report contains a high-level monthly summary of the total costs incurred performing the Consortium's FEED study. This information is provided with the aim of enabling potential developers of CCS projects to estimate up front FEED costs. A detailed cost breakdown is also provided for each of the key parties within the Consortium in the form of Cost, Time and Resource (CTR) information in PDFs below, under the following references: UKCCS - KT - S1.0 - SP - 001 ScottishPower CTR Summary; UKCCS - KT - S1.0 - ACC - 001 Aker Clean Carbon CTR Summary; UKCCS - KT - S1.0 - NG - 001 National Grid CTR Summary; UKCCS - KT - S1.0 - Shell - 001 Shell CTR Summary; The detailed CTR information provides a breakdown of the actual labour effort used for the totality of the FEED scope of work, presented by month and by CTR activity, the type of expertise used, the number of hours worked and the associated costs. The split between internal and external costs is shown, together with the original budget estimates developed for each CTR prior to commencing FEED. The appropriate summary section from the Feed Close Out Report can be downloaded as a PDF (FEED cost.pdf). The main text of the FEED Close Out Report, together with the supporting appendix for this section can be downloaded as PDF files. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/scottish_power/feed_cost/feed_cost.aspx

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This chapter presents the Environment and Consents Reports produced during the current FEED stage. One of the key objectives of the FEED study was to develop information across the project chain, from CO2 generation to storage in sufficient detail to enable production of applications for environmental consents. A Consents Philosophy was generated upon commencement of the FEED to develop a programme of work to achieve this objective, and identified the following groups of consents: Power and capture plant: 1989 Electricity Act - Section 36; Onshore pipeline: 1990 Town and Country Planning Act; Offshore Pipeline; Offshore Platform; Storage Consents. Some keys aspects of the FEED Consents study are: There were significant uncertainties at the outset of the project regarding the types of consent required. This was a consequence of the planning consent for Kingsnorth Units 5 and 6 having already been submitted in 2006, new government policy and draft regulatory guidance, and ongoing government consultations on regulatory issues; Many of these issues were resolved, enabling development of consent applications for the integrated power and capture plant and onshore and offshore CO2 pipeline. However in some cases, particularly for the offshore platform and storage, uncertainty remained throughout the project. In these instances the deliverable was an interpretation of the regulatory requirements that will need to be reviewed and taken into account to obtain consents during subsequent stages of the project. Further supporting documents for chapter 9 of the Key Knowledge Reference Book can be downloaded. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/e_on_feed_/environment_/environment_.aspx

  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland through to construction. The study yielded invaluable knowledge and the resulting material are available for download here. This section provides information on how the Consortium approaches the health, safety and environmental aspects of the End-to-End CCS chain. The key components of the Health and Safety (H&S) Policies already in place for each Consortium Partner include: Commitment from top level management; Systematic approach to ensure legal compliance; Provision of training to develop H&S awareness and competence; Providing a safe and healthy work environment; Identify, assess and control hazards and risks; Set targets and objectives for improvement; Monitor, measure and review H&S performance; Report on H&S performance, both internally and externally; Extend the policy to contractors and monitor their compliance; Include H&S performance in staff appraisal and reward accordingly; Achieve continuous improvement; This section gives some background and the key drivers to health, safety and environmental aspects of carbon capture, transportation and storage. The narrative describes the Consortium's method of integrating process safety activities with the overall design process. In the appendices, the full End-to-End CCS safety report is provided, followed by detailed summaries of all the CCS chain specific health, safety and environmental work undertaken during FEED. The appropriate summary section from the Feed Close Out Report can be downloaded as a PDF (Health, safety and environment.pdf). The main text of the FEED Close Out Report, together with the supporting appendix for this section can be downloaded as PDF files. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/scottish_power/health_safety/health_safety.aspx

  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland through to construction. The study yielded invaluable knowledge and the resulting material are available for download here. This section of the report illustrates how the End-to-End CCS chain must be considered as a system as well as separate elements. It builds upon the description of the individual elements contained in Section 3, and captures the development of the End-to-End CCS chain design carried out during FEED. Specifically, this section focuses on the following aspects: Commissioning the system in preparation for operations, as well as decommissioning at the end of the capture and storage period; Operations and maintenance activities; Control; Metering and monitoring; Venting; This section also provides some selected information on the individual CCS chain elements and a summary of the RAM (reliability, availability and maintainability) analysis undertaken during FEED of which one of the key outputs was the anticipated CO2 injection profile for the project. The appropriate summary section from the Feed Close Out Report can be downloaded as a PDF (End to end CCS chain operation.pdf). The main text of the FEED Close Out Report, together with the supporting appendix for this section can be downloaded as PDF files. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/scottish_power/ccs_chain/ccs_chain.aspx