Keyword

Carbon

31 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 31
  • The International Satellite Land Surface Climatology Project, Initiative II (ISLSCP II) is a follow on project from The International Satellite Land Surface Climatology Project (ISLSCP). ISLSCP II had the lead role in addressing land-atmosphere interactions - process modelling, data retrieval algorithms, field experiment design and execution, and the development of global data sets. The ISLSCP II dataset contains comprehensive data over the 10 year period from 1986 to 1995, from the International Satellite Land Surface Climatology Project (ISLSCP). This dataset contains: *Sea-Air CO2 Flux and Sea-Air CO2 Partial Pressure *CO2 Consumption by Continental Erosion and Riverine Fluxes of Carbon and Sediments to the Oceans *CO2 Emissions *Energy Flux Measurement *Atmospheric CH4 Data *Atmospheric CO2 Data *Global Net Primary Productivity The data are mapped to consistent grids (0.5 x 0.5 degrees for topography, 1 x 1 degrees for meteorological parameters). Some data have a grid size of 0.25 x 0.25 degrees. The temporal resolution for most data sets is monthly (however a few are at finer resolution - 3 hourly). This dataset is public.

  • A dataset of DOC and DBC concentrations from 78 sampling locations in South American rivers (surface waters).

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This chapter contains the output from many of the Project Management processes which control and report the progress of the FEED. The following commentary gives the reader a brief guide to the project management process or approach which has been used. FEED Programme: In order to scope out, control and report the FEED activity, a Work Breakdown Structure was developed. This structure had the following hierarchy - Level 1 - Chain Element; Level 2 - Phase; Level 3 - Discipline; Level 4 - Work Package (including Cost Time Resource definition); The programme is in the form of a fully resource loaded, logically linked network diagram. Risk Management: Throughout this FEED the management of risk was a key activity. This has helped inform and better understand the important risks faced by the project. This 'first of a kind' project saw a large number of new risks being identified, assessed, controlled and monitored during FEED. Project Cost Estimates: An estimating philosophy was established in FEED to set the standards for the estimates produced from across the project participants, including: To ensure a consistent approach in the collection, calculation and presentation of costs across all FEED Participants; To ensure that all likely project costs are identified and captured along with all associated details. A standard template was established for each participant to complete with the details of their section (i.e. Chain Element) of the cost estimate. The cost estimate was broadly consistent with Class 3/4 estimate as defined by AACE. Further supporting documents for chapter 10 of the Key Knowledge Reference Book can be downloaded. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/e_on_feed_/project_manage/project_manage.aspx

  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland through to construction. The study yielded invaluable knowledge and the resulting material are available for download here. This section of the report provides details on the organisation and management of the design as well as key design information for the End-to-End CCS chain. This includes the following: Organisation of the design teams; The End-to-End Basis of Design; The design life; The End-to-End CCS chain process; Piping and instrumentation diagrams; Plant and site layout drawings for the various sites; Equipment; Plant and equipment specifications; Subsurface engineering design reports; No attempt has been made to generalise design data. All of the design information presented is specific to the ScottishPower Consortium Project and has been presented to provide an insight into the development of the End-to-End CCS solution. The FEED design study was based on the Outline Solution developed by the Consortium prior to FEED. The Outline Solution was a conceptual design for the End-to-End CCS chain that was considered to be technically feasible within the constraints of the knowledge available at the time. It included a series of optioneering studies to identify the preferred design for this particular project. During FEED, the Outline Solution design was developed in greater detail to reduce the cost and technical uncertainty, and consequently reduce the financial, programme and technical risks prior to commencing the implementation stage of the project. It must be stressed that a FEED study is carried out to develop a design to the degree that the technical and programme risks are reduced to the agreed limits to better inform the project cost estimate. The current status is that the design has been progressed as far as is practicable within the time and cost constraints of the FEED study. Specifications and datasheets for major equipment have been developed in order that they can be issued to potential suppliers during the implementation phase of the project. The FEED study identified further activities that cannot be performed at the FEED stage of the project but which have been recorded as actions for further investigation during the implementation stage. The FEED study has advanced the development of the application of CCS technology considerably. Though research and conceptual studies are essential to the development of any new technology, they cannot identify many of the difficult design issues that are identified and addressed during a FEED study. Similarly the progress from FEED to the implementation phase is expected to present further challenges for a project of this novel nature. However, the advantage of a FEED study is that the main issues that could present high cost or programme difficulties or even potential 'show stoppers' should already have been identified and, where possible, addressed. Key decisions and design changes taken during the FEED study are explained in Section 11 of the report. The FEED study indicates that CCS remains technically feasible. The appropriate summary section from the Feed Close Out Report can be downloaded as a PDF (Design.pdf). The main text of the FEED Close Out Report, together with the supporting appendix for this section can be downloaded as PDF files.

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This chapter presents the results of studies into the undersea storage reservoir for CO2, in the Lower Bunter sandstone of the depleted Hewett natural gas field, the design recommendations for new wells and recommendations for abandonment of existing wells. The study addresses the following areas; Storage Reservoir integrity and capacity; Construction and completion of wells; CO2 properties and injectivity; Abandonment of existing and new wells; Monitoring; Hazard Identification (HAZID) and Risk Assessment. Some of the key aspects of the Wells and Storage technical design are; Wells that have already been abandoned using conventional methods pose a risk of future leakage to the surface and thereby compromising the integrity of the CO2 store; Data acquisition can be difficult: ensure that all required data sets are identified and make requests as early as possible to ensure quality data is obtained resistant standards; The CO2 equation of state and phase diagram is paramount in designing the injection process. Temperature and pressure of the CO2 must be carefully specified to avoid uncontrolled condensation or vaporisation; Many standard components and materials used in the offshore industry are suitable for use in CO2 flowing regime injection applications. Particular attention must be paid to corrosion resistance and longevity in a CO2 environment; For drilling injection wells into a depleted hydrocarbon reservoir, the principal challenge is drilling into low pore pressures, whilst minimising formation damage. Further supporting documents for Chapter 7 of the Key Knowledge Reference Book can be downloaded. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/e_on_feed_/storage/storage.aspx

  • These images were acquired using micro computed tomographic imaging of 7 sandstone plugs taken at various depths in the Sellafield borehole 13B. SF696 (63.8 m), SF697 (76.1 m), SF698 (96.98 m), SF699 (126.27 m), SF700 (144.03 m), SF701 (172.16 m) and SF702 (181.39 m). These samples are further detailed and analysed in the following article: http://dx.doi.org/10.1144/petgeo2020-092

  • In March 2010, the Scottish CCS (Carbon Capture & Storage) Consortium began an extensive Front End, Engineering and Design (FEED) study to assess what would be required from an engineering, commercial and regulatory, perspective in order to progress the CCS demonstration project at Longannet Power station in Scotland through to construction. The study yielded invaluable knowledge and the resulting material are available for download here. This section of the report is provided as a support document to the tangible learning and documentation contained within the FEED Close Out Report and accompanying appendices. The experiential learning of the teams working across key functions of the FEED study was captured in guided discussions halfway through FEED to establish the specific challenges, successes and learning of the various workstreams involved in undertaking FEED. Representatives from all the workstreams were brought together in December 2010 for a Consortium-wide Lessons Learned Workshop to capture specific, discrete lessons that could benefit future CCS FEED studies in the UK and abroad. Five key themes emerged consistently across workstreams: Ensuring an appropriate mobilisation period Early engagement with key stakeholders Cross-Consortium communication to present an integrated Consortium Recognising restrictions imposed by the bounds of a competitive procurement Working with uncertainty across regulation, scope, budget and political will Workstream specific learning outcomes are summarised in the main report, with detailed examples included in the appendices. The technical and communication workstream appendices both contain examples of actual documents used during the ScottishPower Consortium FEED (National Grid CCS staff training material and the ScottishPower Consortium Communications Strategy) that were considered useful for future CCS project Developers. The appropriate summary section from the Feed Close Out Report can be downloaded as a PDF below (Lessons learned.pdf). The main text of the FEED Close Out Report, together with the supporting appendix for this section can be downloaded as PDF files. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/scottish_power/lessons/lessons.aspx

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This chapter is devoted to the transportation and injection infrastructure requirements of the Kingsnorth Carbon Capture and Storage development. This encompasses a 36 inch (outside diameter) pipeline which runs onshore for approx 10 km and offshore in the Southern North Sea for 260 km, a platform in the vicinity of the Hewett field location, and appropriate facilities both for the conditioning of CO2 before pipeline entry and the processing of the CO2 stream prior to injection into the sequestration site. The chapter highlights in particular the following areas:- Critical assumptions; Platform Concept Selection; Transport Solution Selection; Pipeline Key Issues; Pipeline Pre-Commissioning; Temperature; Emergency Shutdown; Personnel Safety; Venting; Flow Assurance Modelling. Throughout the execution of the work described in this chapter significant opportunity was taken to ensure that the interfaces from capture (and compression) to pipeline/platform and to wells/storage were managed closely. This was achieved by cross system interface management meetings organized to consider interface issues and to compare issues raised in separate HAZIDs. The purpose of conceptual design has been to identify the problems to be addressed comprehensively by the next stage of FEED and this suite of reports provides valuable insights to the challenges faced. All aspects of establishing an agreed philosophy for design and operation of a storage and transport system for CCS begin with understanding what the initial CO2 flow conditions will be at the interface between the well perforations and the reservoir (i.e. at the sandstone face at the bottom of the well). Further supporting documents for chapter 6 of the Key Knowledge Reference Book can be downloaded.

  • During 2010-11, as part of the Carbon Capture & Storage (CCS) Demonstration Competition process, E.ON undertook a Front End Engineering Design (FEED) study for the development of a commercial scale CCS demonstration plant at Kingsnorth in Kent, South East England. The study yielded invaluable knowledge and the resulting material is available for download here. This chapter contains design philosophy documents which were produced to ensure a common approach to the design of all aspects of the CCS project, addressing overall project lifecycle and the interface between the Carbon Capture Plant and the Power Station. Some of the key issues concerning the design and integration of a CCS development are: Power plants have been designed for many years to operate flexibly in response to the demands of the electricity network. The CCS plant technology is closer to process plant technology which is not usually designed for such flexible operation, and this will provide a key challenge during the detailed design process to provide the required flexibility of operation; Assessment of various cooling technologies for the power station and carbon capture plant shows that direct water cooling is the Best Available Technology in terms of Environmental Impact; Significant parts of the existing cooling water infrastructure can be re-used; There is potential to advantageously interface steam and cooling systems between the power plant and CCS plant; Venting, and the consequent cooling, of CO2 for pressure relief or operational reasons raises issues with lack of buoyancy and dispersion which require significant further work. Further supporting documents for chapter 4 of the Key Knowledge Reference Book can be downloaded. Note this dataset is a duplicate of the reports held at the National Archive which can be found at the following link - http://webarchive.nationalarchives.gov.uk/20121217150421/http://decc.gov.uk/en/content/cms/emissions/ccs/ukccscomm_prog/feed/e_on_feed_/project_design/project_design.aspx

  • Carbon and oxygen isotopic composition of planktic foraminifera spanning the early and middle Eocene succession recovered from borehole 16/28-Sb01. For description of this sedimentary sequence see Haughton et al. 2005. Petroleum Geology: North-West Europe and Global Perspectives, Proceedings of the 6th Petroleum Geology Conference, 1077–1094.