oceans
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
-
The dataset comprises 1 hydrographic data profile, collected by a conductivity-temperature-depth (CTD) sensor package, from the North East Atlantic Ocean (limit 40W) area specifically West of the Islamic Republic of Mauritania during April and May 1977. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the Institute of Oceanographic Sciences Wormley Laboratory.
-
This dataset comprises measurements of microbial uptake activities of betaine and choline, particulate phase osmolytes, amplicon sequencing of marker genese involved in Nitrogenous-osmolyte catabolism, and single cell genome data. Water samples were collected from at the L4 station of the Western Channel Observatory between April 27, 2015 to April 24, 2017 using Niskin bottles attached to a rosette sampler deployed from the RV Plymouth Quest. Nitrogenous osmolytes (glycine betaine, choline and trimethylamine N-oxide are essential components for most organisms in the marine environment. They enable cells to exist in a salty environment, but also have several other proposed uses. The aim of the project is to understand the seasonal cycle of glycine betaine, trimethylamine N-oxide and choline at Station L4. The water samples were analysed for the microbial assimilation and dissimilation activities using 14C labelled betaine and choline, respectively. The data will be incorporated to the European Regional Seas Ecosystem Model (ERSEM) coupled with the hydrodynamic model General Ocean Turbulent Model (GOTM) to simulate the N-osmolyte cycling at the L4 station. The data were collected under the project Biogeochemical cycling of N-osmolytes in the surface ocean funded by NERC Discovery Science grants NE/M002233/1 (parent), NE/M003361/1 (child), NE/M002934/1 (child). The grants were led by Dr Yin Chen, Dr Ruth Airs, and Dr Wei Huang respectively.
-
This dataset contains visual and physical analyses of the impacts of ocean acidification on the skeletons of the cold-water coral <em>Lophelia pertusa</em>. Visual analysis includes synchrotron images from the Diamond Light Source and electron back scatter diffraction images on polished coral skeletons. Physical analyses include Raman spectroscopy data. Skeletal samples analysed were from the Southern California Bight (SCB), USA, and the Mingulay Reef Complex (MRC), UK. SCB samples were collected in 2010, 2014 and 2015. MRC samples were collected in 2012. Samples from the SCB were taken using a ROV at varying depths covering an environmental gradient with respect to aragonite saturation. Each sample represents an aggregation of <em>Lophelia pertusa</em> that was sampled with a basket attached to the ROV. The samples were transported to the surface and subsampled for live, ethanol preserved, frozen, and dried samples. Carbonate chemistry parameters of the water column were collected at the same time using a CTD and include temperature, salinity, oxygen, DIC, pH, and total alkalinity. Coral samples from the MRC were subjected to long term experimentation in projected future conditions. The conditions for MRC samples are outlined in Hennige et al. 2015. The coral samples were also analysed using a Scanning Electron Microscope (SEM) and these images are held at BODC and can be requested through this record. RAMAN spectroscopy and Electron Back Scatter Diffraction (EBSD) analysis was also used to further examine the corals under future projections of climate change. Ocean acidification is a threat to cold-water coral reefs in terms of dissolution to their skeletons, and their subsequent structural stability. This will likely determine the stability of the habitats they form. Work in the Southern California Bight was funded by the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science. The study was supported by Diamond Light Source (DLS) experimental campaigns MT19794 and MT20412. This work was supported by an Independent Research Fellowship from the Natural Environment Research Council (NERC) to Sebastian Hennige (NE/K009028/1 and NE/K009028/2) and the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland), funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. Experimental incubations for N. Atlantic corals were supported by the UK Ocean Acidification programme (NE/H017305/1 awarded to John Murray Roberts). Imaging analysis by Uwe Wolfram and Alexander Groetsch were supported by Engineering and Physical Sciences Research Council (EPSRC) of the UK under grant number EP/P005756/1.
-
The data set comprises temperature and salinity hydrocasts collected across the North Atlantic Ocean between 1910 and 1990. The measurements were collected by nine North Atlantic Ocean Weather Ships (OWS): OWS Alpha (1954 – 1974); OWS Bravo (1928 – 1974); OWS Charlie (1910 – 1982); OWS Echo (1910 – 1979); OWS India (1957 – 1975); OWS Juliet (1950 – 1975); OWS Kilo (1949 – 1973); OWS Lima (1948 – 1990); OWS Mike (1948 – 1982). This data set also includes measurements collected close to the general positions prior to the stationing of the Weather ships for the OWS Bravo, Charlie and Echo stations. Data from OWS Alpha, Bravo, Echo, India, Juliett and Kilo have been taken from the US National Oceanographic Data Center (NODC) compilations whereas those from OWS Charlie, Lima and Mike have been constructed from both the US NODC and International Council for the Exploration of the Seas (ICES) data holdings. In addition a daily averaged data set for OWS Charlie is available for the period 1975 - 1985 (supplied by Syd Levitus). This data set was supplied to the British Oceanographic Data Centre (BODC) by ICES. Additional files and more recent data can be acquired from the ICES website.
-
The dataset comprises current profiles and temperature data from 9 half-day survey cruises in the Pentland Firth during April, June, July and October 2009. The data were collected using an acoustic Doppler current profiler (ADCP) mounted on the Aurora, the Environmental Research Institute (ERI) survey vessel, and have been fully processed and calibrated by Dr Lonneke Goddijn-Murphy from the Environmental Research Institute, University of the Highlands and Islands prior to submission to the British Oceanographic Data Centre (BODC). The circulation patterns of the inner sound, Pentland Firth were studied. The purpose of the study was to improve knowledge and capabilities for understanding wave and tidal renewable energy devices and predicting environmental impacts of renewable energy development. The data are available on request from BODC.
-
The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 4.0 is a gridded continuous terrain model covering ocean and land of the Arctic region. The grid has been compiled from data covering approximately 14.2 percent of the Arctic seafloor with multibeam bathymetry and about 5.5 percent with other sources, excluding digitized depth contours. The grid-cell size (resolution) is 200x200 m on a Polar Stereographic projection, with the true scale set at a latitude of 75 deg N and a central meridian of 0 deg. The horizontal datum is WGS 84 and the vertical datum is assumed Mean Sea Level. IBCAO Version 4.0 has been compiled with support from the Nippon Foundation-GEBCO-Seabed 2030 Project, an international effort whose goal it is to see the entire world ocean mapped by 2030. A geographic version of the Polar Stereographic grid serves as input to the General Bathymetric Chart of Oceans (GEBCO) global gridded terrain model.
-
This dataset contains wave data collected by surface moorings across three sites (D1, D2 and D3) west of the Isle of Islay between February 2012 and August 2012. There was a Datawell Mk.III directional Waverider buoy moored at each of the three sites collecting the wave data every 30 minutes. The data were collected as part of the metocean survey of the proposed Islay Offshore Windfarm. Partrac Ltd were contracted to conduct the data collection by SSE Renewables and provided the data to The Crown Estate as the landowner of the UK seabed out to 12 nautical miles. The data and associated metadata reports are held at the British Oceanographic Data Centre, as a MEDIN Data Archiving Centre.
-
The dataset comprises 17 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, from across the North East Atlantic Ocean (limit 40W) area specifically around Cape Verde and to the north east of the Canary Islands. The data were collected from February to April of 1972. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the National Institute of Oceanography.
-
Data from this project is a UK contribution to a US research cruise that aimed to examine the impact of wave breaking and bubble processes on air-sea gas exchange. Measurements were made of whitecap fraction, wave state, wave bubble statistics and bubble properties beneath breaking waves on the R/V Knorr KN213-3 cruise departing Nuuk, Greenland October 9, 2013 arriving at Woods Hole, USA on November 12, 2013. Instruments and platforms used included an 11 meter long free-floating spar buoy equipped with wave wires, a bubble camera, acoustic resonators, a Waverider buoy and ship measurements of aerosol fluxes. Data generation were funded by NERC parent grant NE/J020893/1 awarded to Professor Ian Brooks and associated child grants NE/J020540/1 and NE/J022373/2 awarded to Mr Robin Pascal and Dr Helen Czerski respectively.
-
This dataset consists of image mosaics of submarine canyons off Morocco collected using TOBI side-scan sonar on RV Maria S. Merian cruise MSM32, which occurred between 25 September and 30 October 2013. Imaging was conducted using a TOBI deep tow sidescan sonar, a high-resolution 2D seismic system consisting of a 150m long 88 channel digital streamer and a standard GI-gun. This cruise formed the field component of NERC Discovery Science project ‘How do submarine landslides disintegrate and form long run-out turbidity currents in the deep ocean, and how erosive are these flows?’ The study aimed to generate the first ever field dataset tracing a large-scale submarine landslide and its associated sediment-gravity flow from source-to-sink. This resulting dataset will aim to answer three important science questions: 1) How quickly do large submarine landslides disintegrate into long run-out sediment flows, and how is this process influenced by shape of the slope? 2) How efficiently do landslides remove failed material, i.e. what proportion of landslide debris is deposited on the slope and how much transforms into a flow that is transported distally? 3) How much sediment is incorporated into the flow through seafloor erosion, and where does most of this erosion take place? The Discovery Science project was composed of Standard Grant reference NE/J012955/1 and was led by Professor Russell Barry Wynn (National Oceanography Centre, Science and Technology). Funding ran from 07 June 2013 to 06 June 2014. Data have been received by BODC as raw files from the RRS James Cook and are available on request from BODC enquiries.