Topic
 

oceans

1494 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 1494
  • Categories  

    The dataset comprises 169 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, from across the South Atlantic Ocean and the South Pacific Ocean areas specifically the Scotia Sea and Drake Passage, during March and April of 1999. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the University of East Anglia School of Environmental Sciences as part of the Antarctic Large Scale Box Analysis and The Role Of the Scotia Sea (ALBATROSS) project.

  • Categories  

    The GEBCO Grid is a global terrain model for oceans and land at 30 arc-second intervals which was developed and first released in 2009 by the General Bathymetric Chart of the Oceans (GEBCO) as GEBCO 08. The current release is GEBCO 2014, released in December 2014 and updated in March 2015. GEBCO is an international group of experts who work on the development of a range of bathymetric (accurate mapping of the sea floor) data sets and data products. The bathymetric portion of the grid is largely based on a database of ship-track soundings with interpolation between soundings guided by satellite-derived gravity data. Data sets developed by other methods are also included where they improve the grid. The land portion of the grid is largely based on the US Geological Survey's SRMT30 data set, developed with data from the US National Aeronautics and Space Administration (NASA) Shuttle Radar Topographic Mission (SRTM). For the area around Antarctica, the land data are taken from the Bedmap2 data set. The grid is accompanied by a Source Identifier (SID) Grid which identifies which cells in the GEBCO Grid are based on soundings or existing grids and which have been interpolated. The data sets are updated as new bathymetric compilations are made available. Both grids are freely available to download, in netCDF; data GeoTiff and Esri ASCII raster formats, from the web. Free software is available for viewing and accessing data from the grids in netCDF and ASCII data formats. The grids are also included as part of the GEBCO Digital Atlas DVD.

  • Categories  

    This dataset comprises measurements of microbial uptake activities of betaine and choline, particulate phase osmolytes, amplicon sequencing of marker genese involved in Nitrogenous-osmolyte catabolism, and single cell genome data. Water samples were collected from at the L4 station of the Western Channel Observatory between April 27, 2015 to April 24, 2017 using Niskin bottles attached to a rosette sampler deployed from the RV Plymouth Quest. Nitrogenous osmolytes (glycine betaine, choline and trimethylamine N-oxide are essential components for most organisms in the marine environment. They enable cells to exist in a salty environment, but also have several other proposed uses. The aim of the project is to understand the seasonal cycle of glycine betaine, trimethylamine N-oxide and choline at Station L4. The water samples were analysed for the microbial assimilation and dissimilation activities using 14C labelled betaine and choline, respectively. The data will be incorporated to the European Regional Seas Ecosystem Model (ERSEM) coupled with the hydrodynamic model General Ocean Turbulent Model (GOTM) to simulate the N-osmolyte cycling at the L4 station. The data were collected under the project Biogeochemical cycling of N-osmolytes in the surface ocean funded by NERC Discovery Science grants NE/M002233/1 (parent), NE/M003361/1 (child), NE/M002934/1 (child). The grants were led by Dr Yin Chen, Dr Ruth Airs, and Dr Wei Huang respectively.

  • Categories  

    The GEBCO_2020 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. In regions outside of the Arctic Ocean area, the grid uses as a base Version 2 of the SRTM15_plus data set (Tozer, B. et al, 2019). This data set is a fusion of land topography with measured and estimated seafloor topography. Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project. The GEBCO_2020 Grid represents all data within the 2020 compilation. The compilation of the GEBCO_2020 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. Outside of Polar regions, the gridded bathymetric data sets supplied by the Regional Centers, as sparse grids, i.e. only grid cells that contain data were populated, were included on to the base grid without any blending. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The GEBCO_2020 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA.

  • Categories  

    The WireWall project developed a prototype wave overtopping field measurement system. The system was designed and trailed at Crosby Beach, Hall Road carpark, north of Liverpool during winter 2018/2019. The data collected include both wave-by-wave overtopping volumes and horizontal velocities. At the time of the project the coastal structure at this site comprised a stepped revetment and vertical sea wall with a recurve. The system was designed at the National Oceanography Centre, validated in HR Wallingford’s flume facility and deployed with Sefton Council. Five datasets are available from the project. These contain processed data from: 1) The numerical wave overtopping estimates for past events used to design the system and plan deployments; 2) The numerical wave overtopping estimates for the joint wave and water level conditions with a 1 in 1 year return period probability to a 1 in 200 year return period probability in Liverpool Bay; 3) The dock side tests; 4) The physical laboratory experiments; and, 5) The field trials during windy spring tides. For Crosby these data can be used to validate/calibrate numerical tools used for coastal scheme design and flood hazard forecasting. Beach profile data collected alongside the overtopping measurements have been archived with the Northwest Regional Coastal Monitoring Programme, https://www.channelcoast.org/northwest/. This project was delivered by the National Oceanography Centre in collaboration with HR Wallingford. Our project partners were Sefton Council, Balfour Beatty, Environment Agency, Channel Coastal Observatory and Marlan Maritime Technologies.

  • Categories  

    The data set comprises more than 7000 time series of ocean currents from moored instruments. The records contain horizontal current speed and direction and often concurrent temperature data. They may also contain vertical velocities, pressure and conductivity data. The majority of data originate from the continental shelf seas around the British Isles (for example, the North Sea, Irish Sea, Celtic Sea) and the North Atlantic. Measurements are also available for the South Atlantic, Indian, Arctic and Southern Oceans and the Mediterranean Sea. Data collection commenced in 1967 and is currently ongoing. Sampling intervals normally vary between 5 and 60 minutes. Current meter deployments are typically 2-8 weeks duration in shelf areas but up to 6-12 months in the open ocean. About 25 per cent of the data come from water depths of greater than 200m. The data are processed and stored by the British Oceanographic Data Centre (BODC) and a computerised inventory is available online. Data are quality controlled prior to loading to the databank. Data cycles are visually inspected by means of a sophisticated screening software package. Data from current meters on the same mooring or adjacent moorings can be overplotted and the data can also be displayed as time series or scatter plots. Series header information accompanying the data is checked and documentation compiled detailing data collection and processing methods.

  • Categories  

    The RAGNARoCC dataset includes surface and deep ocean measurements of greenhouse gas concentrations including carbon dioxide, methane and nitrous oxide. The dataset was collected in the North Atlantic Ocean during the RRS James Clark Ross cruise JR20140531 (JR302) which surveyed from Canada, to Greenland, to the United Kingdom via Iceland. The JR302 cruise started on 6th June 2014 and finished on 22nd July 2014. Some water samples were analysed aboard ship, whilst others were subsequently analysed ashore. The dataset is based on data and water samples collected by surface underway measurements and during CTD stations from the RRS James Clark Ross. The RAGNARoCC dataset was collected to understand the size and variability of the sources and sinks of greenhouse gases between the ocean and atmosphere in the North Atlantic Ocean. The dataset was produced by various members of the RAGNARoCC project consortium. Dr. Brian King was the cruise principal investigator for JR302. The data are made available by the British Oceanographic Data Centre, with relevant data also contributing to community research portals such as http://www.socat.info/. The dataset currently includes some of the data from cruise JR302, but is expected to include additional data from JR302. Additional data is also expected from the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) mooring; the Voluntary Observing Ship (VOS) MV Benguela Stream; data from a Bay of Biscay Ferry-box route; and the RRS Discovery cruise DY040.

  • Categories  

    The dataset comprises 28 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, from across the North East Atlantic Ocean (limit 40W) area including specifically the Porcupine Sea Bight area. The data were collected during April and May of 1978. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the Institute of Oceanographic Sciences Wormley Laboratory.

  • Categories  

    For around a decade, southern elephant seals (mirounga leonina) have been used to collect hydrographic (temperature & salinity) profiles in the Southern Ocean. CTD-SRDLs (Conductivity Temperature Depth –Satellite Relayed Data Loggers) attached to seals' heads in Antarctic and sub-Antarctic locations measure water property profiles during dives and transmit data using the ARGOS (Advanced Research & Global Observation Satellite) network (Fedak 2013). CTD-SRDLs are built by the Sea Mammal Research Unit (SMRU, University of St Andrews, UK); they include miniaturised CTD units made by Valeport Ltd. When seals are foraging at sea 2.5 profiles can be obtained daily, on average. Profiles average 500m depth, but can be 2000m in extreme cases (Boehme et al. 2009, Roquet et al. 2011). Deployment efforts have been very intensive in the Southern Indian Ocean, with biannual campaigns in the Kerguelen Islands since 2004 and many deployments in Davis and Casey Antarctic stations (Roquet et al., 2013) more recently. 207 CTD-SRDL tags have been deployed there, giving about 75,000 hydrographic profiles in the Kerguelen Plateau area. About two thirds of the dataset was obtained between 2011 & 2013 as a consequence of intensive Australian Antarctic station deployments. There is also regular data since 2004 from French and Franco-Australian Kerguelen Island deployments. Although not included here, many CTD-SRDL tags deployed in the Kerguelen Islands included a fluorimeter. Fluorescence profiles can be used as a proxy for chlorophyll content (Guinet et al. 2013, Blain et al. 2013). Seal-derived hydrographic data have been used successfully to improve understanding of elephant seal foraging strategies and their success (Biuw et al., 2007, Bailleul, 2007). They provide detailed hydrographic observations in places and seasons with virtually no other data sources (Roquet et al. 2009, Ohshima et al. 2013, Roquet et al. 2013). Hydrographic data available in this dataset were edited using an Argo-inspired procedure and then visually. Each CTD-SRDL dataset was adjusted using several delayed-mode techniques, including a temperature offset correction and a linear-in-pressure salinity correction - described in Roquet et al. (2011). Adjusted hydrographic data have estimated accuracies of about +/-0.03oC and +/-0.05 psu (practical salinity unit). The salinity accuracy depends largely on the distribution of CTD data for any given CTD-SRDL, which decides the quality of adjustment parameters. Adjustments are best when hydrographic profiles are available in the region between the Southern Antarctic Circumpolar Current Front and the Antarctic divergence (55oS-62oS latitude range in the Southern Indian Ocean). Several institutes provided funding for the associated programs and the logistics necessary for the fieldwork. The observatory MEMO (Mammifères Echantillonneurs du Milieu Marin), funded by CNRS institutes (INSU and INEE), carried out the French contribution to the study. The project received financial and logistical support from CNES (TOSCA program), the Institut Paul-Emile Victor (IPEV), the Total Foundation and ANR. MEMO is associated with the Coriolis centre, part of the SOERE consortium CTD02 (Coriolis-temps différé Observations Océaniques, PI: G. Reverdin), which distributes real-time and delayed-mode products. The Australian contribution came from the Australian Animal Tracking and Monitoring System, an Integrated Marine Observing System (IMOS) facility. The work was also supported by the Australian Government's Cooperative Research Centres Programme via the Antarctic Climate & Ecosystem Cooperative Research Centre. The University of Tasmania and Macquarie University's Animal Ethics Committees approved the animal handling. Both tagging programs are part of the MEOP (Marine Mammals Exploring the Oceans Pole to Pole) international consortium - an International Polar Year (IPY) project.

  • Categories  

    The dataset comprises 1 hydrographic data profile, collected by a conductivity-temperature-depth (CTD) sensor package, from the North/North East Atlantic Ocean (limit 40W) area specifically west of Castro Terrace, during June of 1974. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the Institute of Oceanographic Sciences Wormley Laboratory.