Topic
 

imageryBaseMapsEarthCover

1579 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 10 / 1579
  • The ESA Fire Disturbance Climate Change Initiative (Fire_cci) project has produced maps of global burned area developed from satellite observations. The Small Fire Dataset (SFD) pixel products have been obtained by combining spectral information from Sentinel-2 MSI data and thermal information from MODIS MOD14MD Collection 6 active fire products. This dataset is part of v1.1 of the Small Fire Dataset (also known as FireCCISFD11), which covers Sub-Saharan Africa for the year 2016. Data is available here at pixel resolution (0.00017966259 degrees, corresponding to approximately 20m at the Equator). Gridded data products are also available in a separate dataset.

  • Cloud properties derived from a synergetic retrieval from MERIS and AATSR on ENVISAT by the ESA Cloud CCI project. The L3C dataset consists of data combined (averaged) into a global space-time grid, with a spatial resolution of 0.5 degrees lat/lon and a temporal resolution of 1 month. This dataset is version 2.0 data from Phase 1 of the CCI project.

  • Hyperspectral remote sensing measurements using the ARSF Rollei Digital Camera, ARSF AsiaFENIX hyperspectral imager and ARSF Optech Airborne Laser Terrain Mapper 3033 LIDAR instruments onboard the NERC ARSF Dornier Do228-101 D-CALM Aircraft for the HOLUHRAUN_HAZ- Assessing the hazard and testing our understanding of environmental and geophysical responses from emplacement of a large volume lava flow field (EUFAR15_58) project (flight reference: 2015_244b). Data were collected over the Central Iceland area.

  • ARSF project MC04/30: Geoenvironmental mineral deposit modelling using airborne spectral data. PI: Jonathan Naden. Site: Troodos.

  • The Airborne Research & Survey Facility (ARSF, formerly Airborne Remote Sensing Facility) is managed by NERC Scientific Services and Programme Management. It provides the UK environmental science community, and other potential users, with the means to obtain remotely-sensed data in support of research, survey and monitoring programmes. The ARSF is a unique service providing environmental researchers, engineers and surveyors with synoptic analogue and digital imagery of high spatial and spectral resolution.The NEODC holds the entire archive of Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) data acquired by the NERC ARSF. High-resolution scanned digital versions of the entire collection of analogue photographs are now also available as well as selected LiDAR-derived elevation and terrain models for selected sites flown using the sensor.

  • The Airborne Research & Survey Facility (ARSF, formerly Airborne Remote Sensing Facility) is managed by NERC Scientific Services and Programme Management. It provides the UK environmental science community, and other potential users, with the means to obtain remotely-sensed data in support of research, survey and monitoring programmes. The ARSF is a unique service providing environmental researchers, engineers and surveyors with synoptic analogue and digital imagery of high spatial and spectral resolution.The NEODC holds the entire archive of Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) data acquired by the NERC ARSF. High-resolution scanned digital versions of the entire collection of analogue photographs are now also available as well as selected LiDAR-derived elevation and terrain models for selected sites flown using the sensor.

  • The Airborne Research & Survey Facility (ARSF, formerly Airborne Remote Sensing Facility) is managed by NERC Scientific Services and Programme Management. It provides the UK environmental science community, and other potential users, with the means to obtain remotely-sensed data in support of research, survey and monitoring programmes. The ARSF is a unique service providing environmental researchers, engineers and surveyors with synoptic analogue and digital imagery of high spatial and spectral resolution.The NEODC holds the entire archive of Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) data acquired by the NERC ARSF. High-resolution scanned digital versions of the entire collection of analogue photographs are now also available as well as selected LiDAR-derived elevation and terrain models for selected sites flown using the sensor.

  • The Airborne Research & Survey Facility (ARSF, formerly Airborne Remote Sensing Facility) is managed by NERC Scientific Services and Programme Management. It provides the UK environmental science community, and other potential users, with the means to obtain remotely-sensed data in support of research, survey and monitoring programmes. The ARSF is a unique service providing environmental researchers, engineers and surveyors with synoptic analogue and digital imagery of high spatial and spectral resolution.The NEODC holds the entire archive of Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) data acquired by the NERC ARSF. High-resolution scanned digital versions of the entire collection of analogue photographs are now also available as well as selected LiDAR-derived elevation and terrain models for selected sites flown using the sensor.

  • This dataset comprises estimates of forest above-ground biomass for the years 2010, 2017 and 2018. They are derived from a combination of Earth observation data, depending on the year, from the Copernicus Sentinel-1 mission, Envisat’s ASAR instrument and JAXA’s Advanced Land Observing Satellite (ALOS-1 and ALOS-2), along with additional information from Earth observation sources. The data has been produced as part of the European Space Agency's (ESA's) Climate Change Initiative (CCI) programme by the Biomass CCI team. The data products consist of two (2) global layers that include estimates of: 1) above ground biomass (AGB, unit: tons/ha i.e., Mg/ha) (raster dataset). This is defined as the mass, expressed as oven-dry weight of the woody parts (stem, bark, branches and twigs) of all living trees excluding stump and roots 2) per-pixel estimates of above-ground biomass uncertainty expressed as the standard deviation in Mg/ha (raster dataset) This release of the data is version 2, with data provided in both netcdf and geotiff format. The quantification of AGB changes by taking the difference of two maps is strongly discouraged due to local biases and uncertainties. Version 3 maps will ensure a more realistic representation of AGB changes.

  • Sentinel 5 Precursor (S5P) was launched on the 13th of October 2017 carrying the TROPOspheric Monitoring Instrument (TROPOMI). These data products provide geolocated total, tropospheric, or stratospheric Nitrogen dioxide concentrations. The TROPOMI NO2 data products pose an improvement over previous NO2 data sets, particularly in their unprecedented spatial resolution (7×3.5 km2), but also in the separation of the stratospheric and tropospheric contributions of the retrieved slant columns, and in the calculation of the air-mass factors used to convert slant to total columns. Nitrogen dioxide (NO2) and nitrogen oxide (NO) together are usually referred to as nitrogen oxides (NOx = NO + NO2). They are important trace gases in the Earth’s atmosphere, present in both the troposphere and the stratosphere. They enter the atmosphere as a result of anthropogenic activities (notably fossil fuel combustion and biomass burning) and natural processes (such as microbiological processes in soils, wildfires and lightning). During the daytime, i.e. in the presence of sunlight, a photochemical cycle involving ozone (O3) converts NO into NO2 (and vice versa) on a timescale of minutes, so that NO2 is a robust measure for concentrations of nitrogen oxides. Tropospheric and stratospheric concentrations of NO2 are monitored all over the world by a variety of instruments either ground-based, in-situ (balloon, aircraft), or satellite-based each with its own specific advantages.