Type
 

application

20 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 20
  • [This application is embargoed until January 1, 2025]. A collection of python and bash scripts to implement, train and deploy a generative adversarial network for population genetic inferences. The networks have been tuned to be deployed to genomic data from Anopheles mosquitoes. However, the general framework can be applied to other species. It requires the input data to be in Variant Call Format (VCF) format and the simulations need to be in msprime format. Full details about this application can be found at https://doi.org/10.5285/3ae572f6-4862-47ae-b4a0-4b9c496b5b54

  • MultiMOVE is an R package that contains fitted niche models for almost 1500 plant species in Great Britain. This package allows the user to access these models, which have been fitted using multiple statistical techniques, to make predictions of species occurrence from specified environmental data. It also allows plotting of relationships between species' occurrence and individual covariates so the user can see what effect each environmental variable has on the specific species in question. The package is built under R 3.1.2 and depends on R packages 'leaps', 'earth', 'fields', 'mgcv', 'stringr', 'gsubfn', 'randomForest' and 'nnet'. Full details about this application can be found at https://doi.org/10.5285/94ae1a5a-2a28-4315-8d4b-35ae964fc3b9

  • This model combines the carbon footprint of a reforestation project in the Peruvian amazon with a biomass model of the growing trees and a soil carbon model. The script aims at estimating the net carbon capture potential of a growing forest located in the Peruvian amazon and on degraded sandy soil only. It compares the emissions associated with setting up a reforestation plot (from seed reception to seedling transplant) with the expected carbon capture by the growing trees and increased soil carbon stock at a desired timescale. The model includes the production, use, and degradation of biochar. This model was produced within the Soils-R-GGREAT project, funded by NERC. Full details about this application can be found at https://doi.org/10.5285/ef45a7de-035a-486c-9cef-ee7f78a8efcf

  • This R application is an implementation of state tagging approach for improved quality assurance of environmental data. The application returns state-dependent prediction intervals on input data. The states are determined based on clustering of auxiliary inputs (such as meteorological data) made on the same day. The method provides contextual information to assess the quality of observational data and is applicable to any point-based, daily time series observational data. To use this application, the user will need to input two separate csv files: one for state variables and the other for observations. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability. Full details about this application can be found at https://doi.org/10.5285/1de712d3-081e-4b44-b880-b6a1ebf9fcd8

  • This model code for object oriented data analysis of surface motion time series in peatland landscapes provides the procedure to assess peatland condition using object oriented data analysis. The model code assesses peatland condition according to which cluster each surface motion time series is assigned, based on key measures capturing differences between the time series. It can be run on any machine with R. Full details about this application can be found at https://doi.org/10.5285/dbdb9f19-c039-4a73-b590-e1acc7f79df4

  • This code uses pathway modelling to look at correlations of exotic plant invasion in tropical rainforest remnants and continuous sites. Partial least squares path-modelling looks at correlations between latent variables that are informed by measured variables. The code examines the relative influence of landscape-level fragmentation, local forest disturbance, propagule pressure, soil characteristics and native community composition on invasion. The total native community is examined first. Then subsets of the native community are modelled separately, adult trees, tree saplings, tree seedlings and ground vegetation. The relationship between the native and exotic communities was tested in both directions. Full details about this application can be found at https://doi.org/10.5285/adbf6d29-ee7b-4dd1-9730-11d2308d526c

  • This code: (1) Generates equilibrium genotype frequency values. This is provided in the "Script_to_generate_equilibrium_genotype_frequencies.m" script. (2) Tests our relatedness expression with simulated data. This is provided in the "Comparison_of_simulated_and_expected_relatedness.m" script. Full details about this application can be found at https://doi.org/10.5285/07af78a7-4022-43b1-b85f-b31caf596362

  • Two scripts for classifying remotely sensed data used to produce maps of peatland distribution and predicted peat thickness, using random forest classification and regression. Written in JavaScript for use with Google Earth Engine. These are versions of the scripts used in Hastie et al. (2022), https://doi.org/10.1038/s41561-022-00923-4. Users should also cite Rodríguez-Veiga et al. (2020), https://doi.org/10.3390/rs12152380 . Full details about this application can be found at https://doi.org/10.5285/e337de58-df5e-4412-8aef-28875870f965

  • This is a theoretical model of leadership in warfare by exploitative individuals who reap the benefits of conflict while avoiding the costs. In this model we extend the classic hawk-dove model to consider pairwise interactions between groups in which a randomly chosen leader decides whether the group will collectively adopt aggressive or peaceful tactics. We allow for unequal sharing of fitness payoffs among group members such that the leader can obtain either a larger share of the benefits, or pay a reduced share of costs, from fighting compared to their followers. Our model shows that leadership of this kind can explain the evolution of severe collective violence in certain animal societies. Full details about this application can be found at https://doi.org/10.5285/7aab999e-cef9-41c2-8400-63f10af798ec

  • This dataset consists of computer code transcripts for two proprietary flood risk models from a study as part of the NERC Rural Economy and Land Use (RELU) programme. This project was conceived in order to address the public controversies generated by the risk management strategies and forecasting technologies associated with diffuse environmental problems such as flooding and pollution. Environmental issues play an ever-increasing role in all of our daily lives. However, controversies surrounding many of these issues, and confusion surrounding the way in which they are reported, mean that sectors of the public risk becoming increasingly disengaged. To try to reverse this trend and regain public trust and engagement, this project aimed to develop a new approach to interdisciplinary environmental science, involving non-scientists throughout the process. Examining the relationship between science and policy, and in particular how to engage the public with scientific research findings, a major diffuse environmental management issue was chosen as a focus - flooding. As part of this approach, non-scientists were recruited alongside the investigators in forming Competency Groups - an experiment in democratising science. The Competency Groups were composed of researchers and laypeople for whom flooding is a matter of particular concern. The groups worked together to share different perspectives - on why flooding is a problem, on the role of science in addressing the problem, and on new ways of doing science together. We aimed to achieve four substantive contributions to knowledge: 1. To analyse how the knowledge claims and modelling technologies of hydrological science are developed and put into practice by policy makers and commercial organisations (such as insurance companies) in flood risk management. 2. To develop an integrated model for forecasting the in-river and floodplain effects of rural land management practices. 3. To experiment with a new approach to public engagement in the production of interdisciplinary environmental science, involving the use of Competency Groups. 4. To evaluate this new approach to doing public science differently and to identify lessons learnt that can be exported beyond this particular project to other fields of knowledge controversy. This dataset consists of computer code transcripts for two proprietary flood risk models. Flood risk and modelling interview transcripts from this study are available at the UK Data Archive under study number 6620 (see online resources). Further documentation for this study may be found through the RELU Knowledge Portal and the project's ESRC funding award web page (see online resources).