Keyword

NDGO0001

2581 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Representation types
Update frequencies
Resolution
From 1 - 10 / 2581
  • The data set contains values of basal slipperiness (C) and the rate factor (A) for the whole of the Antarctic Ice Sheet. The slipperiness was estimated through model inversion from measurements of surface velocities (1) and ice thickness (2) using the ice-flow model Ua (3). The ice was assumed to deform according to Glen''s flow law with a stress exponent n=3. Basal sliding was assumed to follow Weertman sliding law with m=3, with u_b = C tau^m, where u_b is the basal sliding velocity and tau the (tangential) basal traction.

  • A netcdf-formatted file containing the original binned data (described in Shore et al [2017]), in their state before they were subjected to EOF analysis. These have had additional processing applied to the SuperMAG data (publically available at http://supermag.jhuapl.edu/) in the form of sampling them to the centroid of the bins, thus they are worth providing here despite the large file size (approximately 12GB). To conserve file space, we have removed empty bins, thus the temporal and spatial basis for these data are provided for each filled bin element. Please note that the binned data had not had the temporal mean values (described in Shore et al [2017], and available in the Supporting Information) removed when they were stored in this netcdf file. The file contains 144 (monthly) sets of 8 variables. These variables are named: 1: filled_bin_data_YYYYMM_r 2: filled_bin_data_YYYYMM_theta 3: filled_bin_data_YYYYMM_phi Variables 1 to 3 contain the nanoTesla vales of the binned data for each of the three magnetic field components in the Quasi-Dipole frame. 4: filled_bin_contrib_stations_YYYYMM The three-letter SuperMAG acronym of the station which contributed to each 5-minute mean data point. 5: filled_bin_colats_YYYYMM 6: filled_bin_longs_YYYYMM Variables 5 and 6 are the co-latitude and longitude coordinates of each filled bin element. 7: filled_bin_times_YYYYMM The 5-minute-mean epoch of each filled bin element, with columns in the order: year, month, day, hour, minute, second). 8: filled_bin_indices_YYYYMM A set of fiducial values describing how the sparse elements of the 1D vector of filled bin values relate to the fiducials of the (transposed!) EOF prediction a 2D matrix product of the spatial and temporal eigenvectors with values in every bin. An example of the usage of these data is given in the MATLAB program Shore-ms01.m, provided in the Supporting Information of Shore et al [2017]. ***** PLEASE BE ADVISED TO USE VERSION 2.0 DATA ***** The VERSION 2.0 data set has been corrected for a bug which led to the bins which span the local midnight meridian having fewer samples than they should. The data density in these bins is now in-line with the rest of the polar coverage. Apart from that change, the original and updated data sets are the same.

  • A netcdf-formatted file containing the original binned data (described in Shore et al [2017]), in their state before they were subjected to EOF analysis. These have had additional processing applied to the SuperMAG data (publically available at http://supermag.jhuapl.edu/) in the form of sampling them to the centroid of the bins, thus they are worth providing here despite the large file size (approximately 12GB). To conserve file space, we have removed empty bins, thus the temporal and spatial basis for these data are provided for each filled bin element. Please note that the binned data had not had the temporal mean values (described in Shore et al [2017], and available in the Supporting Information) removed when they were stored in this netcdf file. The file contains 144 (monthly) sets of 8 variables. These variables are named: 1: filled_bin_data_YYYYMM_r 2: filled_bin_data_YYYYMM_theta 3: filled_bin_data_YYYYMM_phi Variables 1 to 3 contain the nanoTesla vales of the binned data for each of the three magnetic field components in the Quasi-Dipole frame. 4: filled_bin_contrib_stations_YYYYMM The three-letter SuperMAG acronym of the station which contributed to each 5-minute mean data point. 5: filled_bin_colats_YYYYMM 6: filled_bin_longs_YYYYMM Variables 5 and 6 are the co-latitude and longitude coordinates of each filled bin element. 7: filled_bin_times_YYYYMM The 5-minute-mean epoch of each filled bin element, with columns in the order: year, month, day, hour, minute, second). 8: filled_bin_indices_YYYYMM A set of fiducial values describing how the sparse elements of the 1D vector of filled bin values relate to the fiducials of the (transposed!) EOF prediction a 2D matrix product of the spatial and temporal eigenvectors with values in every bin. An example of the usage of these data is given in the MATLAB program Shore-ms01.m, provided in the Supporting Information of Shore et al [2017]. ***** PLEASE BE ADVISED TO USE VERSION 2.0 DATA ***** The VERSION 2.0 data set (see ''Related Data Set Metadata'' link below) has been corrected for a bug which led to the bins which span the local midnight meridian having fewer samples than they should. The data density in these bins is now in-line with the rest of the polar coverage. Apart from that change, the original and updated data sets are the same.

  • Version 1.0 This data set contains mesospheric carbon monoxide (CO) data acquired by the ground-based microwave radiometer of the British Antarctic Survey (BAS radiometer) stationed at Troll station in Antarctica (72 deg S, 2.5 deg E, 1270 amsl). The BAS radiometer has been designed in order to study the effects of energetic particle precipitation on the middle and upper atmosphere, using nitric oxide and ozone measurements. This data set contains the CO measurements carried out in order to study the dynamical context. The data set covers the period from February 2008 to January 2010, however, due to very low CO concentrations below approximately 80 km altitude in summer, profiles can only be retrieved during Antarctic winter. CO is measured for approximately 2 hours each day (80 percent of the profiles are within +-2 hours around local noon) and profiles are retrieved approximately every half hour. The retrieved profiles, cover two independent layers in the pressure range from 1 to 0.01 hPa (approximately 48 to 80 km, altitude resolution of approximately 16 km).

  • The dataset comprises multi-proxy analyses of a sediment core (LC7) extracted from Blaso, a large epishelf lake on the margin of 79 degree N Ice Shelf, NW Greenland in July-August 2017. The data are used to constrain ice shelf dynamics over the last 8500 calibrated years before present (cal. years B.P., where present is A.D. 1950). A 2 m-long sediment core was recovered with a UWITEC KOL ''Kolbenlot'' percussion piston corer to a total sediment depth of 3.74 m. Core LC7: 87 m water depth; 79.589 degrees N, 22.494 degrees E. Sedimentological data for the LC7 sediment record consists of physical properties (magnetic susceptibility, wet bulk density) and foraminifera data. This project was funded by the Natural Environment Research Council (NERC) through Standard Grant NE/N011228/1. We thank the Alfred Wegner Institute, and particularly Angelika Humbert and Hicham Rafiq, for their significant logistic support through the iGRIFF project. Additional support was provided from Station Nord (Jorgen Skafte), Nordland Air, Air Greenland and the Joint Arctic Command. Naalakkersuisut, Government of Greenland, provided Scientific Survey (VU-00121) and Export (046/2017) licences for this work.

  • Relativistic electrons in the Earth''s outer radiation belt are a significant space weather hazard. Satellites in GPS-type orbits pass through the heart of the outer radiation belt where they may be exposed to large fluxes of relativistic electrons. In this study we conduct an extreme value analysis of the daily average relativistic electron flux in GPS orbit as a function of energy and L using data from the US NS41 satellite from 10 December 2000 to 25 July 2020. The 1 in 10 year flux at L=4.5, in the heart of the outer radiation belt, decreases with increasing energy ranging from 8.2x10^6 cm^-2s^-1sr^-1MeV^-1 at E = 0.6 MeV to 33 cm^-2s^-1sr^-1MeV^-1 at E = 8.0 MeV. The 1 in 100 year is a factor of 1.1 to 1.7 larger than the corresponding 1 in 10 year event. The 1 in 10 year flux at L=6.5, on field lines which map to the vicinity of geostationary orbit, decrease with increasing energy ranging from 6.2x10^5 cm^-2s^-1sr^-1MeV^-1 at E = 0.6 MeV to 0.48 cm^-2s^-1sr^-1MeV^-1 at E = 8.0 MeV. Here, the 1 in 100 year event is a factor of 1.1 to 13 times larger than the corresponding 1 in 10 year event, with the value of the factor increasing with increasing energy. Our analysis suggests that the fluxes of relativistic electrons with energies in the range 0.6 <= E <= 2.0 MeV in the region 4.25 <= L <= 4.75 have an upper bound. In contrast, further out and at higher energies the fluxes of relativistic electrons are largely unbounded. The research leading to these results has received funding from the Natural Environment Research Council (NERC) grants NE/V00249X/1 (Sat-Risk) and NE/R016038/1.

  • The colony size and breeding success of Gentoo penguins (Pygoscelis papua) on Goudier Island, monitored annually 1996 - 2020. The data presented here includes the number of breeding pairs, the number of chicks that hatched from their eggs (approximately the mid-point in the annual breeding season) and the number of chicks present in creches at defined sub-colonies prior to fledging.

  • The total number of all visitors landing at Goudier Island are recorded by UKAHT staff. The annual season total is provided.

  • Version 2.0 This data set contains mesospheric carbon monoxide (CO) data acquired by the ground-based microwave radiometer of the British Antarctic Survey (BAS radiometer) stationed at Troll station in Antarctica (72 deg S, 2.5 deg E, 1270 amsl). The BAS radiometer has been designed in order to study the effects of energetic particle precipitation on the middle and upper atmosphere, using nitric oxide and ozone measurements. This data set contains the CO measurements carried out in order to study the dynamical context. The data set covers the period from February 2008 to January 2010, however, due to very low CO concentrations below approximately 80 km altitude in summer, profiles can only be retrieved during Antarctic winter. CO is measured for approximately 2 hours each day (80 percent of the profiles are within +-2 hours around local noon) and profiles are retrieved approximately every half hour. The retrieved profiles, cover two independent layers in the pressure range from 1 to 0.01 hPa (approximately 48 to 80 km, altitude resolution of approximately 16 km). In this version of the data; an additional column of "apriori vmr" has been included in the data files.

  • A digital elevation model of the bed of Rutford Ice Stream, Antarctica, derived from radio-echo sounding data. The data cover an 18 x 40 km area immediately upstream of the grounding line of the ice stream. This area is of particular interest because repeated seismic surveys have shown that rapid erosion and deposition of subglacial sediments has taken place. The bed topography shows a range of different subglacial landforms including mega-scale glacial lineations, drumlins and hummocks. This dataset will form a baseline survey which, when compared to future surveys, should reveal how active subglacial landscapes change over time. The dataset comprises observed ice thickness data, an interpolated bed elevation grid, observed surface elevation data and a surface elevation grid.