Creation year

2023

133 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 133
  • The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the Research Center for Environmental Changes (AS-RCEC) TaiESM1 model output for the "AMIP SSTs with pre-industrial anthropogenic and natural forcing" (amip-piForcing) experiment. These are available at the following frequency: Amon. The runs included the ensemble member: r1i1p1f1. CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6). The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record.

  • The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the the MIROC team MIROC-ES2H model output for the "abrupt quadrupling of CO2" (abrupt-4xCO2) experiment. These are available at the following frequency: Amon. The runs included the ensemble members: r1i1p1f2, r1i1p2f2, r1i1p3f2 and r1i1p4f2. CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6). The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record. The the MIROC team team consisted of the following agencies: Atmosphere and Ocean Research Institute (AORI), Centre for Climate System Research - National Institute for Environmental Studies (CCSR-NIES) and Atmosphere and Ocean Research Institute (AORI).

  • The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the Met Office Hadley Centre (MOHC) HadGEM3-GC31-LL model output for the "historical volcanic-only run" (hist-volc) experiment. These are available at the following frequencies: Amon, Emon, EmonZ, LImon, Lmon, Omon, SImon and day. The runs included the ensemble members: r11i1p1f3, r12i1p1f3, r13i1p1f3, r14i1p1f3, r15i1p1f3, r16i1p1f3, r17i1p1f3, r18i1p1f3, r19i1p1f3 and r20i1p1f3. CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6). The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record.

  • Input data for Figure 2.16 from Chapter 2 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 2.16 provides global precipitation minus evaporation trend maps and time series from a variety of data sources --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Gulev, S.K., P.W. Thorne, J. Ahn, F.J. Dentener, C.M. Domingues, S. Gerland, D. Gong, D.S. Kaufman, H.C. Nnamchi, J. Quaas, J.A. Rivera, S. Sathyendranath, S.L. Smith, B. Trewin, K. von Schuckmann, and R.S. Vose, 2021: Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 287–422, doi:10.1017/9781009157896.004. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has four panels, with input data provided for all panels in the main directory --------------------------------------------------- List of data provided --------------------------------------------------- The datasets contains: - Global precipitation and evaporation data from ERA5 reanalysis - Time series of global, land-only and ocean-only average annual P–E (mm day–1) from the following reanalysis products: 20CRv3, ERA5, ERA20CM, MERRA, CFSR, ERA20C, JRA55 and MERRA2. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - Data files: IntermediateData_era5_evap_2.nc and era5_tp_2.nc Panel b: - Data file: GPME2.csv and GPME2.mat Panel c: - Data file: LPME2.csv and LPME2.mat Panel d: - Data file: OPME2.csv and OPME2.mat For panels b to d: I.     Column 2: orange solid line II.    Column 3: cyan solid line III.   Column 4: black solid line IV.   Column 5: grey solid line V.    Column 6: blue solid line VI.   Column 7: dark green solid line VII.  Column 8: brown solid line VIII. Column 9: green solid line 20CRv3 is the NOAA-CIRES-DOE Twentieth Century Reanalysis Version 3. ERA5 is a reanalysis of the global climate from 1950 to present, developed by ECMWF. ERA20CM is a twentieth century atmospheric model ensemble developed by ECMWF. MERRA stands for Modern-Era Retrospective analysis for Research and Applications. CFSR stands for Climate Forecast System Reanalysis. ERA20C is the first atmospheric reanalysis of the 20th century, from 1900-2010, developed by ECMWF. JRA55 stands for Japanese 55-year Reanalysis. MERRA2 stands for Modern-Era Retrospective analysis for Research and Applications, version 2. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Additional information to correctly reproduce the figure in the corresponding readme files for code archived on Zenodo (see the link to code provided in the Related Documents section of this catalogue record). --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the figure on the IPCC AR6 website - Link to the report component containing the figure (Chapter 2) - Link to the Supplementary Material for Chapter 2, which contains details on the input data used in Table 2.SM.1 - Link to the code for the figure, archived on Zenodo.

  • The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the NASA Goddard Institute for Space Studies (NASA GISS) GISS-E2-1-G model output for the "AMIP SSTs with pre-industrial anthropogenic and natural forcing" (amip-piForcing) experiment. These are available at the following frequency: Amon. The runs included the ensemble member: r1i1p1f1. CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6). The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record.

  • Airborne remote-sensed hyperspectral in-situ radiometry data and hyperspectral imagery collected by the NERC Field Spectroscopy Facility (FSF) Headwall Co-aligned VNIR and SWIR imager (450-2500 nm) with LiDAR instruments mounted on a drone platform. These hyperspectral data collected over a sandy and rocky shore have associated uncertainty estimations that will be used to develop of radiometric proxies for plastics detection and assess future mission requirements. This dataset was collected on 22nd July 2021 from Oban airport's shore using a range of different plastic targets

  • Along-Track Scanning Radiometer (ATSR) mission was funded jointly by the UK Department of Energy and Climate Change External Link (DECC) and the Australian Department of Innovation, Industry, Science and Research External Link (DIISR). This dataset collection contains version 3 ATSR2 Multimission land and sea surface data. These data result from the 3rd reprocessing second pass and are tagged v3.0.1. The instrument uses thermal channels at 3.7, 10.8, and 12 microns wavelength; and reflected visible/near infra-red channels at 0.555, 0.659, 0.865, and 1.61 microns wavelength. Level 1b products contain gridded brightness temperature and reflectance. Level 2 products contain land and sea-surface temperature, and NDVI at a range of spatial resolutions. The third reprocessing was done to implement updated algorithms, processors, and auxiliary files. The data were acquired by the European Space Agency's (ESA) Envisat satellite, and the NERC Earth Observation Data Centre (NEODC) mirrors the data for UK users.

  • This dataset contains Aerial LiDAR (also known as airborne laser scanning, ALS) data in .las format collected over tropical forests in Paracou in French Guiana in 2019. The data were collected by Altoa using a BN2 aircraft flying at approximately 900 m altitude at a speed of approximately 180 km/hr. Trajectory files in txt format giving detailed flight data are included with the archived dataset. The LiDAR instrume was a RIEGL LMS-Q780 and used a minimum pulse density of 15 points/sqm. The lateral overlap between two flight lines was 80% with a scan angle of +/- 30 degrees. The data coordinate reference system used with the data files is epsg 2972 more details of this and of the Paracou site can be found in the documentation section.

  • The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the Norwegian Climate Centre (NCC) NorESM2-LM model output for the "AMIP with uniform 4K SST increase" (amip-p4K) experiment. These are available at the following frequency: Amon. The runs included the ensemble member: r1i1p2f1. CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6). The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record.

  • A colour LiDAR (Light Detection And Ranging) dataset was obtained at the cliffs at Happisburgh, Norfolk, UK, over a period of 9 months (April 6, 2019 to December 23, 2019). The scans were taken daily for 90% of the study period using a FARO S350 TLS (Terrestrial LiDAR Scanner). Scans were carried out from two locations consecutively, positioned at around 40 m from the cliffs. The full scans are also split into smaller subsets: "slices", 1 m wide bands oriented perpendicular to the shoreline, and "grids", smaller areas of the beach, to assist analysis. The numerical model SWAN (Simulated Waves Nearshore) (v41.31a), run in non-stationary mode, was used to simulate hourly sea states at the study site to aid in the context of environmental conditions. Wind parameters from the ERA5 reanalysis and bathymetry from the OceanWise 1 arc second digital elevation model (DEM) were used to force the SWAN model, and obtained wave parameters in 4x6 km rectangular grid around the scanning site, with a 10m interval, and a 26x26 km square grid encompassing the smaller grid, with a 100 m interval. The LiDAR scans were also projected into both colour and intensity images, viewing the shoreline from above. This research was funded by the UK Natural Environment Research Council (NE/M004996/1; BLUE-coast project). The on-location LiDAR Scanning and Technical R&D operated by ScanLAB Projects Ltd was funded by Innovate UK's Audience of the Future Program (Multiscale 3D Scanning with Framerate for TV and Immersive Applications project). The first 6 months of LiDAR scans (April to September 2019) were funded by Innovate UK, and this project was continued by the NERC BLUE-coast funding for the last 3 months (October to December 2019).