Creation year

2023

51 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 51
  • Contains standard luminescence measurement files output from the Risø reader (SEC, SEQ, and BINX file types). This data set is comprised of standard files associated with a Risø Luminescence Reader. 48 sediment samples from New Zealand were analyzed using a modified version of pIRIR infrared analysis of feldspars, the 3ET protocol. Sample lab codes are listed in a separate file, along with corresponding site location IDs, field codes, and depth below surface. Three file types are included in this dataset: sec files: Contain the series of commands issued to the Risø Reader for a particular run. txt format, readable by Notepad or similar software. SEQ files: Sequence file used for programming in run sequences. These files are readable with Risø Sequence Editor software. binx files: A binary output file that records measurements made by the Reader. The format is described in Risø's software manuals and is typically accessed using the Risø Analyst software. The file in this data set have names that include the 5-digit sample lab code. A file can contain data from one or more samples. The word 'restart' appears in files where a machine run was interrupted and had to be restarted. The code 'MU' indicates a run where fading measurements were collected. A complete description of the Risø TL/OSL Reader, software, and associated file formats is available at: https://www.fysik.dtu.dk/english/research/radphys/research/radiation-instruments/tl_osl_reader Free software for accessing binx and SEQ files is also available at the DTU link.

  • This information details the method of calculating dilatancy from pore volumometry measurements. In the velocity step tests, an initial shear enhanced compaction phase drastically reduces the sample pore volume until the sample yields. After the sample yields, the pore volume continues to decrease but at a lower rate of decrease. The imposed velocity steps cause compaction or dilation of the sample material that is superimposed on this overall compaction trend. Pore pressure is held at a set point in all tests and any volume changes in the control system are assumed to correspond directly to changes in pore volume in the sample. The method here is aimed at producing quantitative, reproducible values for dilatancy from experimental data. The script fits a polynomial function to all the volume data to give the overall trend of the shear enhanced compaction. The data position of the start of the velocity step of interest is entered manually into the function. When dilatancy occurs on a step change in velocity, this is not immediately recorded using volumometry, as the permeability of the sample will produce a transient response as pore fluid pressure equilibrates between the sample and the pore fluid pressure system. To discount time effects, every velocity step was processed with a ‘time_dep’ phase for the first 100µm of displacement after the imposed velocity step change. Using the values for ‘vel_step’ and ‘time_dep’, the volumometry data are split into separate matrices incorporating time and volume preceding and following the velocity step change. A linear regression model fits a polynomial curve to the pore volumometry data and returns the coefficient of determination (R2) for the fit of the model. The shear enhanced compaction phase prior to yield is included in the fit. The code incrementally adds the value entered for ‘step’ to the data in the velocity step of interest. This ‘step’ value is a positive or negative value depending on whether the velocity has increased or decreased, respectively. A new linear regression model is then fitted to the whole dataset and if the R2 value has increased, the code will continue to loop to add the value of ‘step’ to the pore volume data. It concludes when the R2 value reaches a peak and begins to decrease, as the fit is no longer improving. We assume at this point that the effect of the dilatancy due to the velocity step has been removed, and the cumulative sum of the ‘step’ values is equivalent to the dilatancy. As the loop goes one iteration past the optimum R2 value, the code reverts to the previous set of values with the best R2 value. In experiments with multiple velocity step changes, the code needs to retain the previous corrections of the data. The function ‘pf_correct’ is used to correct the velocity steps that have been previously processed. The values for ‘vel_step’, ‘time_dep’ and the returned value of ‘offset’ need to be given in the inputs for ‘pf_correct’.

  • Activity (dpm/g) of Uranium and thorium isotopes from 3 sediment cores in the North Atlantic: ODP980, ODP983, EW9302-2JPC. Ocean Drilling Program (ODP) Site 980 was drilled in July 1995 in the North Atlantic Ocean, on the Feni Drift, off the eastern edge of the Rockall Plateau at 55.49°N, 14.70°W. Hole 980A Position: 55°29.087'N, 14°42.134'W. Hole 980B Position: 55°29.094'N, 14°42.137'W. ODP Site 983 was drilled was drilled in July 1995 and is located on the Bjorn Drift in approximately 1650 m water depth on the eastern flank of the Reykjanes Ridge. Hole 983A Position: 60°24.200'N, 23°38.437'W. Site EW9302-2JPC, an ODP Site Survey in 1993, of Rockall Plateau and East Flank of Reykjanes Ridge from the Flemish Cap in the south- eastern Labrador Sea (Figure 1). EW9302-2JPC Position: 4847.700 N, 4505.090 W, taken at water depth 1251m.

  • 3D structured light surface scan of a fossil held within the BGS Type and Stratigraphical Reference Collection Sample number: BGS GSM 26215 Species: Lytoceras jurense (Ammonite) Age: Inferior Oolite Group, Jurassic Location: Quarry Hill, Chideock, Dorset

  • Radiocarbon ages of planktic and benthic foraminifera from sediment core EW9302-2JPC in the Northwest Atlantic from 0 to 30,000 years ago. Picked monospecific planktic foraminifera (G. bulloides and N. pachyderma) and mixed planospiral benthic formanifera (Cibicidoides, Melonis, Elphidium) were prepared to graphite at the NERC Radiocarbon Facility - East Kilbride and passed to the Keck Carbon Cycle AMS Facility, University of California, Irvine, USA for 14C analysis.

  • Radiocarbon measurements on planktic and benthic foraminifera from sediment cores in the North Atlantic: Ocean Drilling Program (ODP) 983, SU90-44, MD04-2829, MD01-2461, and EW9302-2JPC Site 983 is located on the Bjorn Drift in approximately 1650 m water depth on the eastern flank of the Reykjanes Ridge. Hole 983A Position: 60°24.200'N, 23°38.437'W. Sediment core SU90-44 collected from the north-eastern Atlantic basin, near the top of a small abyssal hill, southeast of the Rockall plateau, 50°01'N, 17°06'W, 4279 m. Sediment core MD04-2829 collected from Rosemary Bank in the Northern Rockall Trough 58º 56.93’ N; 09º 34.30’ W; 1743 m water depth. Sediment core MD01-2461 was collected from the north-western flank of the Porcupine Seabight approximately 550 km to the southwest, 51°45’N, 12°55’W; 1153 m water depth, recovered in 2001. Core EW9302-2JPC recovered from the Rockall Plateau and East Flank of Reykjanes Ridge from the Flemish Cap in the south- eastern Labrador Sea, 48°47.70′N, 45°05.09′W, taken at water depth 1251m.

  • Zircon U-Pb data are presented for six plutonic rocks recovered from the Pacific oceanic crust (IODP Hole 1256D). These data constrain the age of the section, as well as the duration of crustal accretion. The data cover the bulk of the plutonic section recovered and were generated during post-cruise research for IODP Expedition 335 (2011-2013; PI Lissenberg). Data collection was done at the NERC Isotope Geosciences Laboratories at the British geological Survey. NERC Isotope Geosciences Facilities award IP-1276-1111. This work resulted from participation in IODP Expedition 335, NERC grant NE/J005592/1

  • Major and trace element data of lava and tephra samples from the 2021 Tajogaite eruption. Major and select trace element collected by XRF, trace elements collected by ICPMS, both at the University of Granada. Data collected as part of NERC Urgency Grant led by K Chamberlain (Liverpool), in collaboration with M Pankhurst (INVOLCAN), J Scarrow (Granada), D Morgan (Leeds), J Hickey (Exeter), D Neave (Manchester), for understanding how eruptions begin, evolve and end. Samples analysed span the entire September - December 2021 eruptive sequence of Tajogaite, and data were collected between December 2021 and August 2022.

  • The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the Met Office Hadley Centre (MOHC) HadGEM3-GC31-MM model output for the "Assimilation run paralleling the historical simulation, which may be used to generate hindcast initial conditions" (dcppA-assim) experiment. These are available at the following frequency: Omon. The runs included the ensemble members: r10i1p1f2, r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r5i1p1f2, r6i1p1f2, r7i1p1f2, r8i1p1f2 and r9i1p1f2. CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6). The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record.

  • The World Climate Research Program (WCRP) Coupled Model Intercomparison Project, Phase 6 (CMIP6) data from the NASA Goddard Institute for Space Studies (NASA GISS) GISS-E2-1-G model output for the "AMIP SSTs with pre-industrial anthropogenic and natural forcing" (amip-piForcing) experiment. These are available at the following frequency: Amon. The runs included the ensemble member: r1i1p1f1. CMIP6 was a global climate model intercomparison project, coordinated by PCMDI (Program For Climate Model Diagnosis and Intercomparison) on behalf of the WCRP and provided input for the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6). The official CMIP6 Citation, and its associated DOI, is provided as an online resource linked to this record.