Hydrography
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Scale
Resolution
-
This dataset contains maximum water depth and maximum water velocity for 12 different Glacial Lake outburst floods (GLOFs) scenarios of the Tsho Rolpa Lake, Nepal. Also included is the water depth of dam breach flow and discharge of dam breach flow under each scenario. The GLOFs scenarios were created using a simple dam breach model. A high-performance hydrodynamic model was then used to simulate the resulting flood hydrodynamics. Full details about this dataset can be found at https://doi.org/10.5285/f4292d99-de93-4a28-a821-b2a6a826df4c
-
This is a web map service of the UKCEH digital river network of Great Britain (1:50,000). It is a river centreline network, based originally on OS 1:50,000 mapping. There are four layers: rivers; canals; surface pipes (man-made channels such as aqueducts and leats) and miscellaneous channels (including estuary and lake centre-lines and some underground channels).
-
This dataset contains breakthrough curves of conservative (fluorescein) and reactive (resazurin and resorufin) tracers resulting from instantaneous tracer experiments in a lowland agricultural stream. Breakthrough curves were measured seasonally at four locations within the stream, creating three experimental reaches, in the Wood Brook, Staffordshire from July 2016 to March 2017. Breakthrough curves were measured in-situ using on-line fluorometers configured to measure the excitation of fluorescein, resazurin and resorufin every 10 seconds. The breakthrough curves were measured to determine hydrological metrics of advective transport, transient storage and aerobic respiration. The work was funded by the Natural Environment Research Council, UK through a through a Central England NERC Training Alliance Studentship and grant NE/ L004437/1, with additional funding provided by the European Union through the H2020-MSCA-RISE-2016 project 734317. Full details about this dataset can be found at https://doi.org/10.5285/5b34d963-d0f0-465e-b395-e955b89e1cd7
-
This dataset provides hydro-meteorological timeseries and landscape attributes for 671 catchments across Great Britain. It collates river flows, catchment attributes and catchment boundaries from the UK National River Flow Archive together with a suite of new meteorological timeseries and catchment attributes. Daily timeseries for the time period 1st October 1970 to the 30th September 2015 are provided for a range of hydro-meteorological data (including rainfall, potential evapotranspiration, temperature, radiation, humidity and flow). A comprehensive set of catchment attributes are quantified describing a range of catchment characteristics including topography, climate, hydrology, land cover, soils, hydrogeology, human influences and discharge uncertainty. This dataset is intended for the community as a freely available, easily accessible dataset to use in a wide range of environmental data and modelling analyses. A research paper (Coxon et al, CAMELS-GB: Hydrometeorological time series and landscape attributes for 671 catchments in Great Britain) describing the dataset in detail will be made available in Earth System Science Data (https://www.earth-system-science-data.net/). Full details about this dataset can be found at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9
-
This dataset comprises river centrelines, digitised from OS 1:50,000 mapping. It consists of four components: rivers; canals; surface pipes (man-made channels for transporting water such as aqueducts and leats); and miscellaneous channels (including estuary and lake centre-lines and some underground channels). This dataset is a representation of the river network in Great Britain as a set of line segments, i.e. it does not comprise a geometric network.
-
The dataset provides raster gridded estimates of open water and inundated vegetation for the Barotseland Region in Western Zambia. There are a total of 55 images covering the period 2016-2019 at a spatial resolution of 10m. The images were generated using an automatic classification routine applied to Sentinel-1 radar imagery, with classification refinements made using ancillary datasets such as the Global Urban Footprint, and the Height Above Nearest Drainage terrain derivative generated using SRTM digital elevation data. These data are valuable for a range of applications including public health and water resources. Full details about this dataset can be found at https://doi.org/10.5285/4ef558d2-05d4-4ae2-988e-a5c2450b95dd
-
This dataset contains channel cross-sections for the River Lambourn and Westbrook Channel at the Centre for Ecology & Hydrology (CEH) River Lambourn Observatory at Boxford, Berkshire. The CEH River Lambourn Observatory located in the county of Berkshire, UK (51.445o N 1.384o W) comprises a 600 m reach of the River Lambourn with 10 hectares of associated riparian wetland. The Westbrook Channel divides the wetland into northern and southern meadows. Channel cross-section surveys were conducted using Trimble R8TM dGPS for the Westbrook Channel in May 2013 and the River Lambourn in November 2013. Full details about this dataset can be found at https://doi.org/10.5285/e918198d-42e1-48e6-85ba-3916e20a6658
-
This dataset comprises seven ensembles of hydrological model estimates of monthly mean and annual maximum river flows (m3s-1) on a 0.1° × 0.1° grid (approximate grid of 10 km × 10 km) across West Africa for historical (1950 to 2014) and projected future (2015 to 2100) periods. This dataset is the output from the Hydrological Modelling Framework for West Africa, or “HMF-WA” model. The ensembles correspond to CMIP6 (Coupled Model Inter-comparison Project Phase 6) historical and three projected future climate scenarios (SSP126, SSP245 and SSP585) with two future scenarios of water use. The scenarios of water use are (i) future water use that varies in line with projected population increases, and (ii) future water use is the same as present day. This dataset is an output from the regional scale hydrological modelling study from African Monsoon Multidisciplinary Analysis-2050 (AMMA-2050) project. Full details about this dataset can be found at https://doi.org/10.5285/346124fd-a0c6-490f-b5af-eaccbb26ab6b
-
The data set consists of bathymetric contours, at 100m intervals, from a depth of 100m to 5000m. The data were digitised from two charts of the Northeast Atlantic compiled by geoscientists at the Institute of Oceanographic Sciences (IOS), Wormley, Surrey and published by the UK Hydrographic Office, Taunton. Admiralty Chart C6566: Bathymetry of the northeast Atlantic (IOS Sheet 1) - 'Reykjanes Ridge and Rockall Plateau' by A.S. Laughton, D.G. Roberts & P.M. Hunter published in February 1982 and covering the area (47° to 64°N, 13° to 37°W). Admiralty Chart C6567: Bathymetry of the northeast Atlantic (IOS Sheet 2) - 'Continental Margin around the British Isles' by D.G. Roberts, P.M. Hunter & A.S. Laughton published in February 1977 and covering the area (47° to 64°N, 6°E to 18°W). The data set is included in the Centenary Edition of the GEBCO Digital Atlas (GDA) as sheet G.02. Please note that within the GDA data set some areas covered by sheets IOS sheets 1 and 2 have been replaced by higher resolution data sets. Through the GDA software interface the data may be exported in ASCII or shapefile format.
-
The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 4.0 is a gridded continuous terrain model covering ocean and land of the Arctic region. The grid has been compiled from data covering approximately 14.2 percent of the Arctic seafloor with multibeam bathymetry and about 5.5 percent with other sources, excluding digitized depth contours. The grid-cell size (resolution) is 200x200 m on a Polar Stereographic projection, with the true scale set at a latitude of 75 deg N and a central meridian of 0 deg. The horizontal datum is WGS 84 and the vertical datum is assumed Mean Sea Level. IBCAO Version 4.0 has been compiled with support from the Nippon Foundation-GEBCO-Seabed 2030 Project, an international effort whose goal it is to see the entire world ocean mapped by 2030. A geographic version of the Polar Stereographic grid serves as input to the General Bathymetric Chart of Oceans (GEBCO) global gridded terrain model.