Keyword

Location

206 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 206
  • This dataset contains the codes for water laboratory analysis, sampling dates and locations for soil samples collected from the Tamar catchment in winter 2013/2014 as part of the South West project. It contains soil chemistry data for metals and mineral contents of samples soils. It should be used in conjunction with datasets describing soil bacteria and soil eukaryote operational taxonomic unit sequence data. Full details about this dataset can be found at https://doi.org/10.5285/de35d4ea-e75e-464c-b82f-2c2c1402cf8e

  • A vector polyline at 60 deg S which is the northern limit for ADD datasets.

  • This data was collected during two Antarctic field seasons (2013-14, 2014-15) using two Leica GS10 dual-frequency Global Position Systems (dGPS). We installed 53 2m aluminium stakes in the snow surface along lines perpendicular to ice divides on four ice rises in the Ronne Ice Shelf region. In each season we used the dGPS units to measure the position of each pole. During most position measurements we deployed a rover unit for 20 minutes at each stake while a static base station dGPS unit was left in place for 5 or more hours. In the minority of cases the power to the base station unit failed and data from the rover unit is not accompanied by base-station data.

  • Auroral oval boundary locations derived from IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) satellite FUV (Far Ultra Violet imager) data covering the period from May 2000 until October 2002. Three sets of boundary data were derived separately from the WIC (Wideband Imaging Camera) and SI12/SI13 (Spectrographic Imager 121.8/135.6 nm) detectors. For each image, the position of each pixel in AACGM (Altitude Adjusted Corrected Geomagnetic) coordinates was established. Each image was then divided into 24 segments covering 1 hour of magnetic local time (MLT). For each MLT segment, an intensity profile was constructed by finding the average intensity across bins of 1 degree magnetic latitude in the range of 50 to 90 degrees (AACGM). Two functions were fit to each intensity profile: a function with one Gaussian component and a quadratic background, and a function with two Gaussian components and a quadratic background. The function with a single Gaussian component should provide a reasonable model when the auroral emission forms in a continuous oval. When the oval shows bifurcation, the function with two Gaussian components may provide a better model of the auroral emission. Of the two functions fit to each intensity profile, we determine the one with the lower reduced chi-square goodness-of-fit statistic to be the better model for that profile. For the version 1.1 boundary location data, the fitting process was performed over 200 iterations to achieve each fit. The auroral boundaries were then determined to be the position of the peak of the poleward Gaussian curve, plus its FWHM (full-width half-maximum) value of the Gaussian, to the peak of the equatorward Gaussian, minus its FWHM. In the case of the single Gaussian fit, the same curve is used for both boundaries. A number of criteria were applied to discard poorly located auroral boundaries arising from either poor fitting or incomplete data. A further correction can be applied to the data, to estimate the location of the Earth''s magnetic field''s OCB (open-close boundary). These corrections have been tabulated in a separate file; if this correction is required the adjustments should be made to the poleward boundary value.

  • This dataset contains operational taxonomic units for soil bacteria collected from various land use categories in the Wolf and Tamar catchments in South west England. A range of soils were targeted from the Tamar region comprising a range of land uses. Approximate location of sampling sites was determined from maps to provide good spatial coverage of the catchment. Exact sites were determined in the field, considering accessibility and other logistic, and soils taken. Full details about this dataset can be found at https://doi.org/10.5285/296ded8e-2c80-4a01-98cc-e71e3fa3fa1b

  • This dataset contains operational taxonomic units for epilithon (water samples): Approximate location of sampling sites was determined from maps to provide good spatial coverage of the Wold River through to the Tamar River. Exact sites were determined in the field, considering accessibility and other logistics. The exact location of each sample site was determined using a Garmin GPS12. Three stones were taken from each of the 20 locations and epilithon removed from a defined area. Samples were kept in the cold and removed to the laboratory for analyses. DNA was extracted from all soil and epilithon samples using the MOBIO Powersoil 96 well DNA extraction kit. DNA was quality checked for purity and yield prior to submission for 454 pyrosequencing to assess both bacterial and eukaryotic biodiversity within each sample. Following bioinformatic sequence processing, sequencing were clustered into operational taxonomic units (OTU) and the data tables display the percentage of each OTU within each sample. Full details about this dataset can be found at https://doi.org/10.5285/16649ff0-af24-41b0-bcb4-15e610dac170

  • Soil moisture measurements taken at various sites on Signy Island during the 2008-2009 field season. These measurements were used as part of an investigation to understand the effect of temperature and moisture on the availability of different nitrogen forms.

  • Soil temperature measurements taken at various sites on Signy Island during the 2008-2009 field season. These measurements were used as part of an investigation to understand the effect of temperature and moisture on the availability of different nitrogen forms.

  • Dual-frequency GPS data from a single receiver installed on the surface of Rutford Ice Stream in West Antarctica. The instrument was operated from late 2004 to early 2007. Gaps in the data set occur, through periods of power loss in the winters and during station relocations. Funding was provided by NERC Antarctic Funding Initiative (AFI) GR3/G005, NERC under the British Antarctic Survey National Capability programme, Polar Science for Planet Earth, Leverhulme Trust Fellowship (to T Murray), and RCUK Academic Fellowship (to M A King).

  • This datset contains operational taxonomic units for epilithon eukaryotes (water samples): Approximate location of sampling sites was determined from maps to provide good spatial coverage of the Wold River through to the Tamar River. Exact sites were determined in the field, considering accessibility and other logistics. The exact location of each sample site was determined using a Garmin GPS12. Three stones were taken from each of the 20 locations and epilithon removed from a defined area. Samples were kept in the cold and removed to the laboratory for analyses. DNA was extracted from all soil and epilithon samples using the MOBIO Powersoil 96 well DNA extraction kit. DNA was quality checked for purity and yield prior to submission for 454 pyrosequencing to assess both bacterial and eukaryotic biodiversity within each sample. Following bioinformatic sequence processing, sequencing were clustered into operational taxonomic units (OTU) and the data tables display the percentage of each OTU within each sample. Full details about this dataset can be found at https://doi.org/10.5285/18023db5-25d8-44f7-b291-61869f937367