Format

NetCDF

154 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 154
  • The models are probabilistic inferences of earth structure and earthquake location based around travel times of P and S waves recorded at seismic stations above Preston New Road, Lancashire, UK. For each point in the subsurface, we present many different values of the P- and S-wave velocity which are compatible with the data. Likewise, we present many event locations for each earthquake included in the dataset. These different models represent the posterior probability distribution respectively for the subsurface velocity and earthquake locations.

  • The models are probabilistic inferences of earth structure and earthquake location based around travel times of P and S waves recorded at seismic stations above New Ollerton, Nottinghamshire, UK. For each point in the subsurface, we present many different values of the P- and S-wave velocity which are compatible with the data. Likewise, we present many event locations for each earthquake included in the dataset. These different models represent the posterior probability distribution respectively for the subsurface velocity and earthquake locations.

  • Co-Ordinated Regional Downscaling Experiment (CORDEX) data for the West Asia Domain (WAS-44). The data is produced by the MetOffice Hadley Centre regional model HadRM3P running at 0.44 degree resolution over the West Asia CORDEX domain (WAS-44). HadRM3P is a regional climate model based on the HadCM3 Coupled Climate Model. The HadRM3P model is driven by European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data to run the CORDEX Evaluation experiment, representative of the period from 1990 to 2011. The model outputs are stored on the native grid used for the simulation, which has a consistent spatial resolution across the simulation domain. Each variable is stored at the daily timescale. The collection also includes monthly and seasonal averages. In addition, the archive also includes sub-daily data. The CORDEX program is sponsored by the World Climate Research Program (WCRP) to organise an internationally coordinated framework to produce improved regional climate change projections for all land regions world-wide. The CORDEX-results will serve as input for climate change impact and adaptation studies.

  • The BICEP/NCEO: Monthly global Particulate Organic Carbon (POC) v4.2 datasets contain POC concentrations (mg m^-3) with per pixel uncertainties estimates gridded on both geographic and sinusoidal projections at 4 km spatial resolution for the period of 1997 to 2020. The POC products were generated as part of the European Space Agency (ESA) Biological Pump and Carbon Exchange Processes (BICEP) project with support from the National Centre of Earth Observation (NCEO). The POC concentrations were estimated using an empirical Remote Sensing Reflectance (Rrs) band ratio algorithm by Stramski et al. (2008): 203.2*Rrs(443)/Rrs(555)^-1.034. This algorithm has shown a relatively good performance in the recent global inter-comparison study conducted by Evers-King et al. (2017). Additional variables that were used for the calculation of the POC products are also provided in the datasets, including the Rrs at 443 nm and 555 nm obtained from the ESA Ocean Colour Climate Change Initiative version 4.2 dataset (OC-CCI v4.2)(Sathyendranath et al., 2020). In addition to the papers by Stramski et al. (2008) and Evers-king et al. (2017), for more details on the algorithm and its validation, please see the BICEP Algorithm Theoretical Basis Document (ATBD) and validation report (https://bicep-project.org/Home). This version of the dataset is an updated version of the previous 'NCEO: Monthly global Particulate Organic Carbon (POC) (produced from the Ocean Colour Climate Change Initiative, Version 4.2 dataset)'. A related product based on the Ocean Colour Climate Change Initiative v5.0 data is also available (see the link in the related records section).

  • This dataset includes the Met Office GloSea5 model output prepared for SPECS aerosols (1992-2012). These data were prepared by the Met Office Hadley Centre, as part of the SPECS project. Model id is GloSea5 (GloSea5: HadGEM3 v3.0 (2014); atmosphere: UM (GA3.0) ; ocean: NEMO (v2, ORCA0.25) ; coupler: OASIS3 (v3.3); sea ice: CICE), frequency is daily and monthly. Daily Atmospheric variables are: pr psl rls rlut tas tasmax tasmin Monthly atmos variables: pr psl ta tas zg Monthly seaIce variables: sic sit snd Ocean variables: so thetao tos uo vo

  • This dataset contains measurements of enrichment of 14C in carbon dioxide in air taken from Tacolneston tower. The samples were taken at 185m and analysed by Aerosol Mass Spectrometer (AMS) at Keck-Carbon Cycle AMS facility, University of California, Irvine. This data was collected as part of the NERC GAUGE (Greenhouse gAs UK and Global Emissions) project (NE/K002449/1NERC and TRN1028/06/2015). The GAUGE project aimed to produce robust estimates of the UK Greenhouse Gas budget, using new and existing measurement networks and modelling activities at a range of scales. It aimed to integrate inter-calibrated information from ground-based, airborne, ferry-borne, balloon-borne, and space-borne sensors, including new sensor technology.

  • Airborne atmospheric measurements from core and non-core instrument suites data on board the British Antarctic Survey (BAS) Masin Twin-Otter aircraft collected for the Microphysics of Antarctic Clouds (MAC) project.

  • Data from the MOHC (Met Office Hadley Centre) HadGEM3-ES model, part of the International Global Atmospheric Chemistry (IGAC)/ Stratosphere-troposphere Processes and their Role in Climate (SPARC) Chemistry-Climate Model Initiative phase 1 (CCMI-1). CCMI-1 is a global chemistry climate model intercomparison project, coordinated by the University of Reading on behalf of the World Climate Research Program (WCRP). The dataset includes data for the CCMI-1 reference experiments: ref-C1 and ref-C2. ref-C1: Using state-of-knowledge historic forcings and observed sea surface conditions, the models simulate the recent past (1960–2010). ref-C2: Simulations spanning the period 1960–2100. The experiments follow the WMO (2011) A1 baseline scenario for ozone depleting substances and the RCP 6.0 (Meinshausen et al., 2011) for other greenhouse gases, tropospheric ozone (O3) precursors, and aerosol and aerosol precursor emissions.

  • Measurements of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulfur hexafluoride (SF6), carbon monoxide (CO) and a suite of halocarbons and other trace gases have been taken at Tacolneston tall tower as part of the UK DECC (Deriving Emissions linked to Climate Change) Network. Tacolneston (TAC) is a rural UK site located on the in the east of England, 16 km south-west of Norwich (population ~200,000), and 32 km east of Thetford (population ~20,000), in Norfolk, UK. Three gas chromatography instruments measured atmospheric N2O, SF6, CO, H2 and other trace gas species from an inlet positioned at a height of 100 m above ground level between 2012-01-01 and 2017-03-09. The inlet height was then changed to 185 m above ground level. Two instruments (GC-RGA and GC-ECD) were decommissioned on 2018-03-13. The remaining two continue to operate. Two laser-based instruments have been used to measure CO2, CH4, N2O and CO from inlet heights of 54 m, 100 m, and 185 m above ground level. Due to the location of the site, far from strong sources of local pollution, measurements from this site can be used to calculate emission maps of trace gas species in the UK in combination with other measurement stations in the UK (Bilsdale, Ridge Hill and Heathfield) and Ireland (Mace Head). This work was funded by Business Energy and Industrial Strategy (BEIS) contracts TRN1028/06/2015 and TRN1537/06/2018 to the University of Bristol.

  • Data from the Met Office Hadley Centre (MOHC) Earth System model HadGEM3-ES, part of the International Global Atmospheric Chemistry (IGAC)/ Stratosphere-troposphere Processes and their Role in Climate (SPARC) Chemistry-Climate Model Initiative phase 1 (CCMI-1). CCMI-1 is a global chemistry climate model intercomparison project, coordinated by the University of Reading on behalf of the World Climate Research Program (WCRP). The dataset includes data for the following CCMI-1 reference experiments: ref-C1 and ref-C2. ref-C1: Using state-of-knowledge historic forcings and observed sea surface conditions, the models simulate the recent past (1960–2010). ref-C2: Simulations spanning the period 1960–2100. The experiments follow the WMO (2011) A1 baseline scenario for ozone depleting substances and the RCP 6.0 (Meinshausen et al., 2011) for other greenhouse gases, tropospheric ozone (O3) precursors, and aerosol and aerosol precursor emissions.