Format

JPEG

36 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Representation types

Update frequencies

Service types

Resolution

Regions

GEMET keywords

From 1 - 10 / 36
  • Photos and videos collected during earthquake damage surveys of the village of Amatrice, central Italy. The earthquake struck on the 24th of August 2016 at 3:36 am local time, a Mw 6.2 earthquake struck a mountainous region of central Italy on the borders between Umbria, Marche, Lazio and Abruzzo. The Earthquake Engineering Field Investigation Team (EEFIT) mission ran from the 4th to the 15th of October 2016. The three main aspects investigated were the ground surface effects caused by the earthquake, the structural damage of masonry buildings and bridges and the effects of the earthquake on reinforced concrete structures and infrastructure.

  • Field photographs of rock formations or modern precipitates from the sedimentary environment. Samples were collected throughout the UK. This data was collected between February 2019 and November 2019. This data was collected to better understand the low temperature cycling of Telurium (Te) and Sellenium (Se) in the geological environment. For example, a range of ochre samples were included in this data. Ochres are a modern precipitate commonly found in rivers and streams which flow through geographical areas with a history of mining resources which are rich in sulphides. Iron from the sulphides are leached out and deposited downstream, coating river and stream beds, giving a red, yellow or orange colouration. Ochres can be a sink for trace metals such as Te and Se, therefore studying these environments could be informative from a resource perspective but also from an environmental hazard perspective. This data would be useful for researchers who require reference photographs for similar studies or as an aid for resampling.

  • These data comprise collection records of Heliconius butterfly samples collected in the Chocó-Darien ecoregion between the Andes and the Pacific in Ecuador and Colombia, and the Pacific coast of the Darien region of Panama. Samples were collected over five sampling trips between 2014 and 2016. Data were collected for a study of clinal variation across this region in Heliconius erato and Heliconius melpomene, so focus on these two species. However, in most cases all observed Heliconius species were collected. The dataset includes photographs of the wings of most of the specimens, which were used for an analysis of colour and pattern variation. Many of these individuals also have genomic information available for them on the European Nucleotide Archive (ENA) - the data includes ENA accession numbers. Data were collected as part of a NERC fellowship project (NE/K008498/1). Full details about this dataset can be found at https://doi.org/10.5285/cb23c552-caee-4221-bdd3-83b172139ae1

  • Data from laboratory experiments conducted as part of project NE/K011464/1 (associated with NE/K011626/1) Multiscale Impacts of Cyanobacterial Crusts on Landscape stability. Soils were collected from eastern Australia and transferred to a laboratory at Griffith University, Queensland for conduct of experiments. Soils were characterised before, during and after simulated rainfall to determine impact of rainfall on soil surface roughness and physical crusting. For two soils (#13 DL Clay_cyano; #14 DL sand_cyano) cyanobacterial crusts were grown on subsamples and these were used to compare the response of soils with, and without, cyanobacterial soil crusts to rainfall treatment. Rainfall intensity of 60 mm hr-1 was used and rainfall was applied for 2 minutes (achieving 2 mm application), 5 minutes (achieving 5 mm application), 2 minutes (achieving 2 mm application) at 24-hour intervals with soils dried at 35°C and 30% humidity between applications in a temperature/humidity-controlled room. Variables measured were soil texture, penetrometry, salinity, splash loss, infiltration, organic matter content, occurrence of ponding, three-dimensional topography. Details of rainfall simulator, growth of cyanobacteria (where soil #13 = Acbc, soil #14 = Bcbc) and all other methods can be found in Bullard et al. 2018, 2019. Bullard, J.E., Ockelford, A., Strong, C.L., Aubault, H. 2018. Impact of multi-day rainfall events onsurface roughness and physical crusting of very fine soils. Geoderma, 313, 181-192. doi: 10.1016/j.geoderma.2017.10.038. Bullard, J.E., Ockelford, A., Strong, C.L., Aubault, H. 2019. Effects of cyanobacterial soil crusts on surface roughness and splash erosion. Journal of Geophysical Research – Biogeosciences. doi: 10.1029/2018 tbc

  • LCM2007 is a parcel-based thematic classification of satellite image data covering the entire United Kingdom. The map updates and upgrades the Land Cover Map of Great Britain (LCMGB) 1990 and LCM2000. Like the earlier 1990 and 2000 products, LCM2007 is derived from a computer classification of satellite scenes obtained mainly from Landsat, IRS and SPOT sensors. It also covers Northern Ireland and incorporates information derived from other ancillary datasets. LCM2007 was classified using a nomenclature corresponding to the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompasses the entire range of UK habitats. In addition, it recorded further detail where possible, incorporating land cover classes sought by other users. LCM2007 is produced in both vector and raster formats, with a number of different versions containing varying levels of detail and at different spatial resolutions. This dataset consists of 1km percentages per Target Class. Northern Ireland only.

  • This view service shows the 25m resolution raster version of the Land Cover Map 2007 for Great Britain. Each 25m pixel represents a 25m area of land cover target class, broadly representing Broad Habitats. The dataset is part of a series of data products produced by the Centre for Ecology & Hydrology known as LCM2007. LCM2007 is a parcel-based thematic classification of satellite image data covering the entire United Kingdom. The map updates and upgrades the Land Cover Map of Great Britain (LCMGB) 1990 and LCM2000. Like the earlier 1990 and 2000 products, LCM2007 is derived from a computer classification of satellite scenes obtained mainly from Landsat, IRS and SPOT sensors and also incorporates information derived from other ancillary datasets. LCM2007 was classified using a nomenclature corresponding to the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompasses the entire range of UK habitats. In addition, it recorded further detail where possible. The series of LCM2007 products includes vector and raster formats, with a number of different versions containing varying levels of detail and at different spatial resolutions.

  • This web map service (WMS) depicts estimates of mean values of soil bacteria, invertebrates, carbon, nutrients and pH within selected habitats and parent material characteristics across GB . Estimates were made using CS data using a mixed model approach. The estimated means of habitat/parent material combinations using 2007 data are modelled on dominant habitat and parent material characteristics derived from the Land Cover Map 2007 and Parent Material Model 2009, respectively. Bacteria data is representative of 0 - 15 cm soil depth and includes bacterial community structure as assessed by ordination scores. Invertebrate data is representative of 0 - 8 cm soil depth and includes Total catch, Mite:Springtail ratio, Number of broad taxa and Shannon diversity. Gravimetric moisture content (%) data is representative of 0 - 15 cm soil depth Carbon data is representative of 0-15 cm soil depth and includes Loss-on-ignition (%), Carbon concentration (g kg-1) and Carbon density (t ha-1). Loss-on-ignition was determined by combustion of 10g dry soil at 375 deg C for 16 hours; carbon concentration was estimated by multiplying LOI by a factor of 0.55, and carbon density was estimated by combining carbon concentration with bulk density estimates. Nutrient data is representative of 0 - 15 cm soil depth and includes total nitrogen (N) concentration (%), C:N ratio and Olsen-Phosphorus (mg/kg). pH and bulk density (g cm-3) data is representative of 0 - 15 cm soil depth. Topsoil pH was measured using 10g of field moist soil with 25ml de-ionised water giving a ratio of soil to water of 1:2.5 by weight; bulk density was estimated by making detailed weight measurements throughout the soil processing procedure. Areas, such as urban and littoral rock, are not sampled by CS and therefore have no associated data. Also, in some circumstances sample sizes for particular habitat/parent material combinations were insufficient to estimate mean values.

  • Fault lubrication during earthquake propagation in thermally unstable rocks in Central Italy Fieldwork pictures Fucino Basin Fault system: Castel di Monte fault Parasano fault Rocca Casale fault Venere fault Fieldwork pictures L’Aquila Fault System: Assergi fault Bitumen quarry Campo Imperatore Magnola fault Panoramic view Pettino fault Piani di pezza fault Vado di Corno fault Raw data from friction experiments. Links to associated papers: https://doi.org/10.1130/G35272.1 https://doi.org/10.1002/2015JB011914 http://dx.doi.org/10.1016/j.jsg.2013.10.008 http://dx.doi.org/10.1016/j.epsl.2011.09.001 http://dx.doi.org/10.1016/j.epsl.2015.09.002 http://dx.doi.org/10.1130/focus062013.1

  • This web map service (WMS) is the 1km percentage aggregate class version of the Land Cover Map 2015 (LCM2015) for Northern Ireland. It shows the percentage cover for each of 10 aggregated land cover classes for 1km x 1km pixels. The 10 aggregate classes are broad groupings of the 21 target classes, based on the Joint Nature Conservation Committee (JNCC) Broad Habitats and which encompass the entire range of UK habitats. The aggregate classes group some of the more specialised classes into more general categories. For example, the five coastal classes in the target class are grouped into a single aggregate coastal class.

  • This web map service (WMS) is the 1km percentage target class version of the Land Cover Map 2015 (LCM2015) for Great Britain. It shows the percentage cover for each of 21 land cover classes for 1km x 1km pixels. The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats.