Keyword

NGDC Deposited Data

1204 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Scale
Resolution
From 1 - 10 / 1204
  • Published Papers: 1) Brown, W.J., Mound, J.E. \& Livermore, P.W., (2013) Physics of the Earth and Planetary Interiors, Vol 223, pp 62-76 Jerks abound: an analysis of geomagnetic observatory data from 1957 to 2008 doi:10.1016/j.pepi.2013.06.001 2) Cox, G.A., Livermore, P.W. & Mound, J.E., (2014) Geophysical Journal International. Vol 196, pp 1311--1329. Forward models of torsional waves: dispersion and geometric effects doi:10.1093/gji/ggt414 3) Hori, K., Jones, C.A. & Teed, R.J. (2015) Geophysical Research Letters, vol 42, pp 6622--6629. Slow magnetic Rossby waves in the Earth's Core. doi:10.1002/2015GL064733 4) Teed, R.J., Jones, C.A. & Tobias, S.M., (2014) Geophysical Journal International, vol 196, pp 724--735. The dynamics and excitation of torsional waves in geodynamo simulations. doi:10.1093/gji/ggt432 5) Teed, R.J., Jones, C.A. & Tobias, S.M., (2015) Earth and Planetary Science Letters, Vol 419, pp 22-31. The transition to earth-like torsional oscillations in magnetoconvection simulations. Doi:10.1016/j.epsl.2015.02.045

  • Geochemical data: %C, %OC, %IC, %N Physical Property data: Wet and dry bulk density, water content, porosity. Sediment cores extracted from Offshore Region: Loch Sunart NM 70277 63360, 56.705259, -5.7545471. For more information see published report, Substantial stores of sedimentary carbon held in mid-latitude fjords. / Smeaton, Craig; Austin, William; Davies, Althea; Baltzar, A.; Abell, R. E.; Howe, J. A. doi:10.5194/bg-13-5771-2016

  • Laboratory experimental data on time-dependent rock deformation by the mechanism of brittle creep. The data was obtained from laboratory triaxial deformation experiments. The full dataset also includes a compilation of data on this topic from other laboratories that has previously been published in the open literature.

  • Each of this set of 3D X-ray tomography datasets show a particle “bead pack” developed as a magmatic mush analogues but of use to anyone investigating non-spherical systems. The stack of tiff images in each 3D dataset show either cuboid, rod and disc/plate like particles as well as irregular shapes and mixtures of these. The data were used to measure packing geometries, contact areas, and pore volumes, surface areas and connectivity, and perform permeability simulation used to develop advanced porosity-permeability relationships for any bead packing geometry. The data were collected on a Nikon XCT scanner with the exact imaging condition for each scan presented in the txt settings file in each folder (including x-ray energy, flux and resolution information). The data may be of use to those developing advanced finite element, discrete element or flow models in complex packed beds.

  • These files contain data for microscopy and mineral analyses on Fe-Ni-Cu sulfide minerals in the lower crust below arc systems using the example of the Ivrea Zone in Italy. Samples are lower crustal cumulates with variable concentrations of Fe-Ni-Cu sulfides collected by Dave Holwell from the Ivrea Zone. The sample details will be logged in a separate data entry and more information can be found in the open access paper by Holwell et al (2022) in Nature Geoscience, https://doi.org/10.1038/s41467-022-28275-y. Data were acquired during 2019, 2020 and 2021. Folders include: metadata (time-resolved analysis spectral data) for laser ablation ICP-MS analysis of sulfide minerals. Laser-ablation ICPMS analyses were performed using a ESI UP213 laser system coupled to a Thermo iCAPRQ ICP-MS system at the School of Earth and Environmental Sciences, Cardiff University. The data were gathered to understand the concentrations of precious and semi-metal trace elements and their likely mineral forms in the various Fe-Ni-Cu sulfide minerals. Collected under the From Arc Magma to Ore System (FAMOS) Project.

  • Output from the FAMOUS General Circulation Model presented in the study by Dentith et al. (2018) "Ocean circulation drifts in multi-millennial climate simulations: the role of salinity corrections and climate feedbacks". The following ocean variables are included at model resolution (2.5 ° x 3.75 °): salinity, meridional overturning streamfunction, potential temperature, mixed layer depth, and barotropic streamfunction. Precipitation, evaporation and sea ice concentration data are also included at atmospheric resolution (5 ° x 7.5 °). All data has been processed into netCDF timeseries.

  • The data consists of Fe-isotope ratio measurements, expressed in permil notation (δ57Fe) relative to the international standard IRMM-014 following standard practise. The measurements are of bulk rock samples and the sample set consisted of a suite of well-characterized basalts and picrites from three periods in the evolution of the Galápagos plume, from the approximately 70- to 90-Ma plume head [Tortugal, Curaçao (Lesser Antilles), and Gorgona Island (Colombia)], 60- to 70-Ma head-tail transitional accreted terranes [Quepos (Costa Rica) and Azuero Peninsula (Panama)], and modern (<2 Ma) steady-state plume. The samples were provided by collaborators Esteban Gazel (Central American samples) and Dennis Geist (Galapagos) in powder form. Original data on the samples can be found in the following references: D. J. Geist, T. R. Naumann, J. J. Standish, M. D. Kurz, K. S. Harpp, W. M. White, D. J. Fornari, Wolf Volcano, Galápagos Archipelago: Melting and magmatic evolution at the margins of a mantle plume. J. Petrol. 46, 2197–2224 (2005). M. D. Kurz, J. Curtice, D. Fornari, D. J. Geist, M. Moreira, Primitive neon from the center of the Galápagos hotspot. Earth Planet. Sci. Lett. 286, 23–34 (2009). J. Trela, E. Gazel, A. V. Sobolev, L. Moore, M. Bizimis, B. Jicha, V. G. Batanova, The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs. Nat. Geoscience 10, 451–456 (2017). J. Trela, C. Vidito, E. Gazel, C. Herzberg, C. Class, W. Whalen, B. Jicha, M. Bizimis, G. E. Alvarado, Recycled crust in the Galápagos Plume source at 70 Ma: Implications for plume evolution. Earth Planet. Sci. Lett. 425, 268–277 (2015). Iron separation and isotope measurements were performed at the Department of Earth Sciences, University of Cambridge following established procedures such as those described in the following papers: H. M. Williams, M. Bizimis, Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts. Earth Planet. Sci. Lett. 404, 396–407 (2014). C. R. Soderman, S. Matthews, O. Shorttle, M. G. Jackson, S. Ruttor, O. Nebel, S. Turner, C. Beier, M.-A. Millet, E. Widom, M. Humayan, H. M. Williams, Heavy δ57Fe in ocean island basalts: A non-unique signature of processes and source lithologies in the mantle. Geochim. Cosmochim. Acta 292, 309–332 (2021). Measurements were made on a Neptune Plus multicollector inductively coupled plasma mass spectrometer (MC-ICPMS) in wet plasma, with typical 2 SEs on multiple δ57/54Fe measurements of the same sample better than 0.02‰ and measurements of reference materials in agreement with accepted values. Data table S1 gives the measured Fe isotope data, along with a compilation of selected literature major and trace element used in this study. Data table S2 gives the measured Fe isotope data for the geological reference materials used during analytical sessions. Data table S3 gives the range of calculated primary Fe isotope compositions for each locality. For more information see published paper, Caroline R. Soderman et al. ,The evolution of the Galápagos mantle plume. Sci. Adv.9,eadd5030(2023).DOI:10.1126/sciadv.add5030

  • 2 papers and supplementary information produced from NERC Grant NE/I006427/1. Lear, C. H., H. K. Coxall, G. L. Foster, D. J. Lunt, E. M. Mawbey, Y. Rosenthal, S. M. Sosdian, E. Thomas, and P. A. Wilson (2015), Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry, Paleoceanography, 30, 1437–1454, doi:10.1002/2015PA002833. Elaine M. Mawbey, Caroline H. Lear; Carbon cycle feedbacks during the Oligocene-Miocene transient glaciation. Geology ; 41 (9): 963–966. doi: https://doi.org/10.1130/G34422.1

  • Wind, sediment transport and surface/saltation data collected at Huab River Valley during a field campaign in September 2019 to investigate saltation on gravel and sand surfaces. Surface/saltation data: This is terrestrial laser scanned (TLS) data collected over sand and gravel surfaces during multiple days when saltation was active, on a surface approximately 8 m from the TLS, perpendicular to the wind direction. The data is raw point cloud format in text columns of x, y and z coordinate data. Files are named *_^_scan& where * is the date that the data was collected in yymmdd format, ^ is surface type (sand or gravel) and & is the scan number. Each data set uses the same coordinate system. Data can be viewed in any spatial software. Wind and sediment data were collected from a fixed point on each surface, directly downwind of the TLS data. The data is in csv file format with column titles and can be viewed in any text or database software. Data include hot wire measurements at different heights, Wenglor counts, sensit counts and 3D sonic measurements on some days. Sonic data is at 10 Hz, hotwire data at 10 second intervals, transport data is given within both datasets.

  • The Terra-correlator: A computing facility for massive real-time data assimilation in environmental science. Two Application Framework Papers: 1) Report on Terra-Correlator Application Framework. 2) Use Cases and Requirements for Terra-Correlator Application Framework, plus the codes used for the work done.