Contact for the resource

University of Edinburgh

144 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Representation types

Update frequencies

Scale

Resolution

Regions

GEMET keywords

From 1 - 10 / 144
  • This dataset relates to the scientific journal article "A pilot-scale study of dynamic response scenarios for the flexible operation of post-combustion CO2 capture" (Tait et al. 2016), a study which was funded as part of the call 2 project "Towards more flexible generation with CCS". Pilot plant data from five dynamic scenarios for post-combustion capture on a state-of the-art NGCC plant (circa 2015) are included. The output from a novel solvent sensor, which can provide continuous online measurement of solvent CO2 loading is also included for several scenarios. The article can be found at: http://dx.doi.org/10.1016/j.ijggc.2015.12.009. More information on the project is available at https://ukccsrc.ac.uk/resources/ccs-projects-directory/towards-more-flexible-power-generation-ccs-pilot-plant-test

  • Technical report (2009) commissioned by Christian Aid and written by researchers from the University of Edinburgh and the University of Surrey. It aims to explore the prospects for carbon capture and storage (CCS) to play a significant role within global action to mitigate the risk of climate change, with a focus on India. Available for download at http://hdl.handle.net/1842/15679.

  • Contains 6 SCCS technical briefings, technical letters and technical journal responses - Working Paper 2010-04: Popular response to Economides, CO2 storage is feasible; Working Paper 2010-05: Formal response to Economides, CO2 storage is feasible; Working Paper 2010-07: Comment on Little and Jackson: Potential Impacts of Leakage from Deep CO2 Geosequestration on Overlying Freshwater Aquifers; Working Paper 2012-01: Comment by Stuart Haszeldine on Zoback and Gorelick; Working Paper 2014-01: Sleipner CO2 securely stored deep beneath seabed, in spite of unexpected Hugin fracture discovery; Working Paper 2015-02: Carbon Dioxide Transport Plans for Carbon Capture and Storage in the North Sea Region - A summary of existing studies and proposals applicable to the development of Projects of Common Interest.

  • This Microsoft Excel document contains 8 worksheets providing data produced by research as part of EPSRC Grant #EP/K036033/1. These data are presented and discussed in the manuscript "The Inherent Tracer Fingerprint of Captured CO2." by Flude, S. Györe, D., Stuart, F.M., Zurakowska, M., Boyce, A.J., Haszeldine, S., Chalaturnyk, R., and Gilfillan, S. M. V. (Currently under review at IJGGC). Data include samples collected, gas concentrations, stable isotope data and noble gas data. This data relates to publication https://doi.org/10.1016/j.ijggc.2017.08.010.

  • A selection of abstracts and posters presented at international conferences as part of EPSRC Grant #EP/K036033/1.

  • This collection comprises two time-series of 3D in-situ synchrotron x-ray microtomography (μCT) volumes showing two Ailsa Craig micro-granite samples (ACfresh02 and ACHT01) undergoing triaxial deformation. These data were collected in-situ at the PSICHE beamline at the SOLEIL synchrotron, Gif-sur-Yvette, France in December 2016 (standard proposal 20160434) and are fully explained in Cartwright-Taylor A., Main, I.G., Butler, I.B., Fusseis, F., Flynn M. and King, A. (in press), Catastrophic failure: how and when? Insights from 4D in-situ x-ray micro-tomography, J. Geophys. Res. Solid Earth. Together, these two time-series show the influence of heterogeneity on the micro-crack network evolution. Ailsa Craig micro-granite is known for being virtually crack-free. One sample (ACfresh02) remained as-received from the quarry until it was deformed, while the second (ACHT01) was slowly heated to 600 degC and then slowly cooled prior to deformation in order to introduce material disorder in the form of a network of nano-scale thermal cracks. Thus these two samples represent two extreme end-members: (i) ACfresh02 with the lowest possible (to our knowledge) natural pre-existing crack density, and so is a relatively homogeneous sample and (ii) ACHT01 with a thermally-induced nano-crack network imprinted over the nominally crack-free microstructure, and therefore has increased heterogeneity relative to ACfresh02. Each 3D μCT volume shows the sub-region of each sample in which the majority of damage was located and has three parts. Part one is reconstructed 16-bit greyscale data. Part two is 8-bit binary data showing individual voids (pores and micro-cracks) in the dataset after segmentation. Part three is 32-bit data showing the local thickness of each void, as in Cartwright-Taylor et al. (in press) Figures 4 and 5. Each part is a zip file containing a sequence of 2D image files (.tif), sequentially numbered according to the depth (in pixels, parallel to the loading axis) at which it lies within the sample volume. File dimensions are in pixels (2D), with an edge length of 2.7 microns. Each zip file is labelled with the sample name, the relevant letter for each 3D volume as given in Cartwright-Taylor et al. (in press) Tables 3 and 4, part 1, 2 or 3 (depending whether the data are greyscale, binary or local thickness respectively), the differential stress (MPa) on the sample, and the associated ram pressure (bar) to link with individual file names. The following convention is used: sample_letter_part_differentialstress_rampressure_datatype. Also included are (i) two spreadsheets (.xlsx), one for each sample, containing processing parameters and the mechanical stress and strain at which each volume was scanned, and (ii) zip files containing .csv files containing measurement data for the labelled voids in each volume. N.B. void label numbers are not consistent between volumes so they can only be used to obtain global statistics, not to track individual voids.

  • Technical report, component of ‘Progressing Scotland’s CO2 storage opportunities’ 2010. Carbon Capture, Transport and Storage is a very active field of research, especially for the past decade. From the UK perspective, a commercially crucial aspect is the saline aquifer research, since there are predicted to be vast storage capacities in the sedimentary formations of the North Sea. The report reviews the ongoing work on practical injections of CO2 as research tests for storage projects and specifically focuses on industrial sized saline aquifer injections. Available for download at http://hdl.handle.net/1842/15681.

  • This presentation on the UKCCSRC Call 2 project Quantifying Residual and Dissolution Trapping in the CO2CRC Otway Injection Site was presented at the UKCCSRC Edinburgh Biannual Meeting, 15.09.2016. Grant number: UKCCSRC-C2-204.

  • Technical report. Ove Arup & Partners Limited (Arup) and their partners Scottish Carbon Capture and Storage (SCCS) were commissioned in December 2009 by the European Commission Directorate-General Energy and Transport (DG-TREN) to undertake a feasibility study for Europe-wide CO2 infrastructures. The purpose of the study was to develop a complete and integrated database of European CO2 sinks and sources and identify the main outline of a CO2 transport infrastructure for different scenarios. Available for download at http://hdl.handle.net/1842/15686.

  • This poster on the UKCCSRC Call 2 project Towards more flexible power generation with CCS was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C2-214.