Contact for the resource

University College London

90 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 10 / 90
  • This UKCCSRC (UK Carbon Capture and Storage Research Centre) Call 1 project involved the development, testing and validation of a two-fluid transient flow model for simulating outflow following the failure of high pressure CO2 pipelines is presented. The project made use of experimental data and used experimental data available from other UK/EC funded projects. The model developed accounts for thermal and mechanical non-equilibrium effects during depressurisation by utilising simple constitutive relations describing inter-phase mass, heat and momentum transfer in terms of relaxation to equilibrium. Pipe wall/fluid heat exchange on the other hand is modelled by coupling the fluid model with a finite difference transient heat conduction model. This paper describes the model, the details of its numerical solution and its validation as well as parametric analysis of relevant parameters. http://www.sciencedirect.com/science/article/pii/S1750583614002394, DOI: 10.1016/j.ijggc.2014.08.013. UKCCSRC grant UKCCSRC-C1-07.

  • These data are the recorded outcomes of binary male choice experiments. Teleopsis dalmanni males were able to choose to mate with either a large or a small female. Individuals were taken from laboratory stock populations. Also included is information on male genotype indicating if he is a carrier of a sex-ratio distorting or nondistorting X chromosome, and a calculation of male preference. The second dataset additionally contains measures of male eyespan and thorax length obtained by measuring images. Full details about this nonGeographicDataset can be found at https://doi.org/10.5285/d6c36f89-07f1-4bcc-96a0-f5302fd3ccec

  • The raw data contain genotype information for offspring collected from controlled crosses of Teleopsis dalmanni. Parents were taken from laboratory stock populations. Offspring genotypes were assigned by sizing a microsatellite, which distinguishes sex-ratio distorting and nondistorting X chromosomes. Also included is information on offspring sex and food treatment. The processed data summarises genotype counts by collection date and cage id (date/food treatment/cage). Also included is a fitness calculation for each genotype in each cage. Full details about this nonGeographicDataset can be found at https://doi.org/10.5285/71529a64-6c1b-4c8f-ae3f-7c4870efd976

  • The data contain phenotype measures of Teleopsis dalmanni males. Individuals were all taken from a laboratory stock population. Individuals carried either a nondistorting wildtype X chromosome or a sex-ratio distorting X chromosome. Data were obtained by measuring images of testes, accessory glands, thorax and eyespan, and direct counts of fertilised (hatched) and unfertilised egg. Full details about this nonGeographicDataset can be found at https://doi.org/10.5285/6e4c5823-35f5-4c90-b616-2190d87c0391

  • This poster on the UKCCSRC Call 2 project The Development and Demonstration of Best Practice Guidelines for the Safe Start-up Injection of CO2 into Depleted Gas Fields was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-183. Highly-depleted gas fields represent prime potential targets for large-scale storage of captured CO2 emitted from industrial sources and fossil-fuel power plants. Given the potentially low reservoir pressures as well as the unique thermodynamic properties of CO2, especially in the presence of the various stream impurities, the injection process presents significant safety and operational challenges. In particular, the start-up injection leads to the following risks: • blockage due to hydrate and ice formation following the contact of the cold CO2 with the interstitial water around the wellbore; • thermal stress shocking of the wellbore casing steel, leading to its fracture and ultimately escape of CO2; • over-pressurisation accompanied by CO2 backflow into the injection system due to the violent evaporation of the superheated liquid CO2 upon entry into the wellbore.

  • This project will develop and experimentally validate a heterogeneous flow model for predicting the transient depressurisation and outflow following the puncture of dense phase CO2 pipelines containing typical impurities. Such data is expected to serve as the source term for the quantitative consequence failure assessment of CO2 pipelines including near field and far field dispersion, fracture propagation and blowdown. Grant number: UKCCSRC-C1-07. UKCCSRC - UK Carbon Capture and Storage Research Centre.

  • 2 published papers from NERC grant NE/G016879/1. Palaeosol Control of Arsenic Pollution:The Bengal Basin in West Bengal, India by by U. Ghosal, P.K. Sikdar, and J.M. McArthur. Tracing recharge to aquifers beneath an Asian megacity with Cl/Br and stable isotopes: the example of Dhaka, Bangladesh by M. A. Hoque, J. M. McArthur, P. K. Sikdar, J. D. Ball and T. N. Molla (DOI 10.1007/s10040-014-1155-8)

  • This presentation on the UKCCSRC (UK Carbon Capture and Storage Research Centre) Call 1 project, Multi-Phase Flow Modelling for Hazardous Assessment, was presented at the Cranfield Biannual, 22.04.15. Grant number: UKCCSRC-C1-07.

  • This poster on the UKCCSRC (UK Carbon Capture and Storage Research Centre) Call 1 project, Multi-Phase Flow Modelling for Hazardous Assessment, was presented at the Cambridge Biannual, 02.04.14. Grant number: UKCCSRC-C1-07.

  • This is a blog (Final, 18.11.14) on the UKCCSRC (UK Carbon Capture and Storage Research Centre) Call 1 project, Multi-Phase Flow Modelling for Hazardous Assessment. Grant number: UKCCSRC-C1-07.