Keyword

Meteorological geographical features

178 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 178
  • [THIS DATASET HAS BEEN WITHDRAWN]. 1km resolution gridded meteorological variables over Great Britain for the years 1961-2012. This dataset contains time series of daily mean values of air temperature (K), specific humidity (kg kg-1), wind speed (m s-1), downward longwave radiation (W m-2), downward shortwave radiation (W m-2), precipitation (kg m-2 s-1) and air pressure (Pa), plus daily temperature range (K). These are the variables required to run the JULES land surface model [1] with daily disaggregation. The precipitation data were obtained by scaling the Gridded estimates of daily and monthly areal rainfall (CEH-GEAR) daily rainfall estimates [2,3] to the units required for JULES input. Other variables were interpolated from coarser resolution datasets, taking into account topographic information. [1] Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes, Geoscientific Model Development, 4, 677-699, doi:10.5194/gmd-4-677-2011, 2011. [2] Tanguy, M., Dixon, H., Prosdocimi, I., Morris, D. G., Keller, V. D. J. (2014). Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890-2012) [CEH-GEAR]. NERC-Environmental Information Data Centre doi:10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e [3] Keller,V. D. J., Tanguy, M. , Prosdocimi, I. , Terry, J. A. , Hitt, O., Cole, S. J. , Fry, M., Morris, D. G., Dixon, H. (2015) CEH-GEAR: 1km resolution daily and monthly areal rainfall estimates for the UK for hydrological use. Earth Syst. Sci. Data Discuss., 8, 83-112, www.earth-syst-sci-data-discuss.net/8/83/2015/ doi:10.5194/essdd-8-83-2015. Full details about this dataset can be found at https://doi.org/10.5285/80887755-1426-4dab-a4a6-250919d5020c

  • [THIS DATASET HAS BEEN WITHDRAWN]. 1 km gridded estimates of daily and monthly rainfall for Great-Britain and Northern Ireland (together with approximately 3000 km2 of catchment in the Republic of Ireland) from 1890 to 2017. The rainfall estimates are derived from the Met Office national database of observed precipitation. To derive the estimates, monthly and daily (when complete month available) precipitation totals from the UK rain gauge network are used. The natural neighbour interpolation methodology, including a normalisation step based on average annual rainfall, was used to generate the daily and monthly estimates. The estimated rainfall on a given day refers to the rainfall amount precipitated in 24 hours between 9am on that day until 9am on the following day. The CEH-GEAR dataset has been developed according to the guidance provided in BS 7843-4:2012. Full details about this dataset can be found at https://doi.org/10.5285/ee9ab43d-a4fe-4e73-afd5-cd4fc4c82556

  • This dataset contains information about meteorological conditions and ammonia concentration and deposition rates resulting from an experimental setup. An NH3 enhancement experiment along with a full suite of multi-height meteorological measurements was established in a Birch woodland near Edinburgh, UK. Under suitable wind conditions measured at the meteorological tower, NH3 is released towards a monitoring transect. Along the downwind monitoring transect, NH3 concentrations in the air are measured using monthly passive samplers. Deposition rates are modelled using a bi-directional resistance model based on measured NH3 concentrations in the air, micrometeorology and plant physiology. Additionally, NH3 concentrations were measured at high temporal resolution at a fixed downwind distance from the source to achieve the target enhancement concentrations. The work was supported by UKRI GCRF South Asian Nitrogen Hub (Grant NE/S009019/1) and NERC (Grant NE/R016429/1). Full details about this dataset can be found at https://doi.org/10.5285/e30ca77b-9118-4279-8b3a-a4c7773d1c43

  • 5km gridded Standardised Precipitation Index (SPI) data for Great Britain, which is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al [1]. There are seven accumulation periods: 1, 3, 6, 9, 12, 18, 24 months and for each period SPI is calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. This version supersedes previous versions (version 2 and 3) of the same dataset due to minor errors in the data files. NOTE: the difference between this dataset with the previously published dataset "Gridded Standardized Precipitation Index (SPI) using gamma distribution with standard period 1961-2010 for Great Britain [SPIgamma61-10]" (Tanguy et al., 2015; https://doi.org/10.5285/94c9eaa3-a178-4de4-8905-dbfab03b69a0) , apart from the temporal and spatial extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Tanguy et al., 2014; https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e) was used, whereas in this new version, Met Office 5km rainfall grids were used (see supporting information for more details). The methodology to calculate SPI is the same in the two datasets. [1] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. Full details about this dataset can be found at https://doi.org/10.5285/233090b2-1d14-4eb9-9f9c-3923ea2350ff

  • Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) groups (Kral et al. [1]). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [2]. SPI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1961 to 2012. [1] Kral, F., Fry, M., Dixon, H. (2015). Integrated Hydrological Units of the United Kingdom: Groups. NERC-Environmental Information Data Centre https://doi.org/10.5285/f1cd5e33-2633-4304-bbc2-b8d34711d902 [2] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. Full details about this dataset can be found at https://doi.org/10.5285/dfd59438-2170-4472-b810-bab33a83d09f

  • A soil moisture product for Great Britain at two spatial resolutions: 12.5km and 1km, based on triple collocation error estimation and a least-squares merging scheme. Two remote sensing soil moisture datasets (one passive microwave dataset: SMAP, and one active microwave dataset: ASCAT) and a modelled soil moisture dataset (from JULES-CHESS land surface model) were combined to produce this dataset. The dataset covers the period going from 1st April 2015 to 31st December 2017, at a daily timestep, and is available at two spatial resolutions: 12.5km; and 1km, which has been obtained after resampling all three underlying datasets to a 1km resolution. Full details about this dataset can be found at https://doi.org/10.5285/26b8ddd4-09fd-4e40-a556-6a8f3a7481ea

  • [THIS DATASET HAS BEEN WITHDRAWN]. 5km gridded Standardised Precipitation Index (SPI) data for Great Britain, which is a drought index based on the probability of precipitation for a given accumulation period as defined by [1]. SPI is calculated for different accumulation periods: 1, 3, 6, 9, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. This release supersedes the previous version, doi:10.5285/ed7444fc-8c2a-473e-98cd-e68d3cffa2b0, as it addresses localised issues with the source data (Met Office monthly rainfall grids) for the period 1960 to 2000. It also supersedes version 2 of the dataset with the same title (doi:10.5285/1b228b42-42f8-4aee-b964-2c92a21d5556). Version 2 contained incorrect files for SPI18 (duplicated SPI12 files). NOTE: the difference between this dataset with the previously published dataset 'Gridded Standardized Precipitation Index (SPI) using gamma distribution with standard period 1961-2010 for Great Britain [SPIgamma61-10]" [2], apart from the temporal and spatial extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR [3], [4] was used, whereas in this new version, Met Office 5km rainfall grids were used (see supporting information for more details). The methodology to calculate SPI is the same in the two datasets. [1] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. [2] Tanguy, M.; Hannaford, J.; Barker, L.; Svensson, C.; Kral, F.; Fry, M. (2015). Gridded Standardized Precipitation Index (SPI) using gamma distribution with standard period 1961-2010 for Great Britain [SPIgamma61-10]. NERC Environmental Information Data Centre. https://doi.org/10.5285/94c9eaa3-a178-4de4-8905-dbfab03b69a0 [3] Keller, V. D. J., Tanguy, M., Prosdocimi, I., Terry, J. A., Hitt, O., Cole, S. J., Fry, M., Morris, D. G., and Dixon, H.: CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological use, Earth Syst. Sci. Data Discuss., 8, 83-112, doi:10.5194/essdd-8-83-2015, 2015. [4] Tanguy, M.; Dixon, H.; Prosdocimi, I.; Morris, D. G.; Keller, V. D. J. (2014). Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890-2012) [CEH-GEAR]. NERC Environmental Information Data Centre. https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e Full details about this dataset can be found at https://doi.org/10.5285/12c3a0d7-741c-4b1f-bfcb-f72ce5b43036

  • [THIS DATASET HAS BEEN WITHDRAWN]. Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) groups (Kral et al. [1]). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [2]. SPI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. NOTE: the difference between this dataset with the previously published dataset 'Standardised Precipitation Index time series for IHU Groups (1961-2012)' [SPI_IHU_groups] (Tanguy et al., 2015 [3]), apart from the temporal extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Keller et al., 2015 [4], Tanguy et al., 2014 [5]) was used, whereas in this new version, Met Office 5km rainfall grids were used (see supporting information for more details). Within Historic Droughts project (grant number: NE/L01016X/1), the Met Office has digitised historic rainfall and temperature data to produce high quality historic rainfall and temperature grids, which motivated the change in the underlying data to calculate SPI. The methodology to calculate SPI is the same in the two datasets. [1] Kral, F., Fry, M., Dixon, H. (2015). Integrated Hydrological Units of the United Kingdom: Groups. NERC-Environmental Information Data Centre doi:10.5285/f1cd5e33-2633-4304-bbc2-b8d34711d902 [2] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. [3] Tanguy, M.; Kral., F.; Fry, M.; Svensson, C.; Hannaford, J. (2015). Standardised Precipitation Index time series for Integrated Hydrological Units Groups (1961-2012). NERC Environmental Information Data Centre. https://doi.org/10.5285/dfd59438-2170-4472-b810-bab33a83d09f [4] Keller, V. D. J., Tanguy, M., Prosdocimi, I., Terry, J. A., Hitt, O., Cole, S. J., Fry, M., Morris, D. G., and Dixon, H.: CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological use, Earth Syst. Sci. Data Discuss., 8, 83-112, doi:10.5194/essdd-8-83-2015, 2015. [5] Tanguy, M.; Dixon, H.; Prosdocimi, I.; Morris, D. G.; Keller, V. D. J. (2014). Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890-2012) [CEH-GEAR]. NERC Environmental Information Data Centre. https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e Full details about this dataset can be found at https://doi.org/10.5285/047d914f-2a65-4e9c-b191-09abf57423db

  • 1 km gridded estimates of daily and monthly rainfall for Great-Britain and Northern Ireland (together with approximately 3000 km2 of catchment in the Republic of Ireland) from 1890 to 2019. The rainfall estimates are derived from the Met Office national database of observed precipitation. To derive the estimates, monthly and daily (when complete month available) precipitation totals from the UK rain gauge network are used. The natural neighbour interpolation methodology, including a normalisation step based on average annual rainfall, was used to generate the daily and monthly estimates. The estimated rainfall on a given day refers to the rainfall amount precipitated in 24 hours between 9am on that day until 9am on the following day. The CEH-GEAR dataset has been developed according to the guidance provided in BS 7843-4:2012. Full details about this dataset can be found at https://doi.org/10.5285/dbf13dd5-90cd-457a-a986-f2f9dd97e93c

  • [THIS DATASET HAS BEEN WITHDRAWN]. 1km resolution gridded potential evapotranspiration over Great Britain for the years 1961-2015. This dataset contains time series of two potential evapotranspiration variables. The first is potential evapotranspiration (PET) (mm/day) calculated using the Penman-Monteith equation [1] for FAO-defined well-watered grass [2]. The second is potential evapotranspiration with interception correction (PETI) (mm/day), which adds a correction for interception by a well-watered grass on days in which there is rainfall. Both PET and PETI are calculated using the Climate Hydrology and Ecology research Support System meteorology dataset (CHESS-met) meteorological variables [3]. [1] Monteith, J.L.: Evaporation and environment, in: 19th Symposia of the Society for Experimental Biology, University Press, Cambridge, 1965 [2] Allen, R.G., Pereira, L.S., Raes, D., and Smith, M.: Crop evapotranspiration - Guidelines for computing crop water requirements, Food and Agriculture Organization of the United Nations, Rome, Italy, FAO Irrigation and Drainage Paper, 1998. [3] Robinson, E.L., Blyth, E., Clark, D.B., Finch, J., Rudd, A.C. (2016). Climate hydrology and ecology research support system meteorological dataset (1961-2015) [CHESS-met] . NERC-Environmental Information Data Centre https://doi.org/10.5285/10874370-bc58-4d23-a118-ea07df8a07f2 Full details about this dataset can be found at https://doi.org/10.5285/8baf805d-39ce-4dac-b224-c926ada353b7