Format

Contact data centre for format details.

703 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 703
  • Skin Sea Surface Temperature data from the (A)ATSR Validation Campaign by SISTeR. The prime objective of the (A)ATSR mission is to return accurate measurements of the global sea surface temperature. To ensure the accuracy of the measurement, there have been joint efforts to validate the data. One of these efforts is the (A)ATSR Validation Campaign which involves the deployment of the Scanning Infrared Sea surface Temperature Radiometer (SISTeR). The SISTeR is a self-calibrating radiometer that measures the skin sea surface temperature. The SISTeR was mounted on MS Color Festival and MS Prinsesse Ragnhild to return skin sea surface temperature in the North Sea in 2006, and was on-board RMS Queen Mary 2 collecting data from the Atlantic Ocean, Indian Ocean and Western Pacific between 2010 and 2014. Data was collected continuously throughout the cruises unless severe weather conditions required the instrument to be protected, which results in the prevention of the data collection.

  • This dataset collection contains Chemical Ablation Model version 3 (CABMOD3) simulations of metal ablation from meteoroids and Meteoric Ablation Simulator (MASI) sodium and nickel ablation experimental data. This experiment was undertaken as part of Natural Environment Research Council (NERC) First study of the global Nickel and Aluminium Layers in the upper atmosphere (NIALL) project (NE/P001815/1). This project aimed to make the first ever study of Ni and Al chemistry in the mesosphere/lower thermosphere.

  • "The Circulation, overflow, and deep convection studies in the Nordic Seas using tracers and models" project was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00446 - Duration 1 Aug 2003 - 31 Oct 2006 ) led by Prof Andrew Watson of the University of East Anglia, also with co-investigators at the University of East Anglia. Dataset contains sources of water in the Greenland-Scotland overflows: recent tracer release and transient tracer observations, as well as the initiation of convection and its relation to submesoscale hydrodynamics. This dataset collection contains MIT General Circulation Model (MITgcm) ocean model basin and channel experiment outputs. The project investigated two aspects of the Nordic Seas circulation of importance to the North Atlantic meridional overturning circulation (MOC): (1) Sources of water in the Greenland-Scotland overflows: recent tracer release and transient tracer observations were used to constrain inverse models of the sources of Denmark Straits and Faroe-Bank channel overflow waters. (2) The initiation of convection and its relation to submesoscale hydrodynamics: very high-resolution non-hydrostatic models for the Central Greenland Sea were used to model recent observations, which show convection to be intimately related to local sub-mesoscale structure.: The objective was to develop improved descriptions of convection for use in OGCMs, to more accurately describe how the sinking branch of the MOC will be affected by changes in forcing. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • WCRP CMIP5: Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC) CMCC-CM model output collection.

  • WCRP CMIP5: Met Office Hadley Centre (MOHC) HadGEM2-A model output collection.

  • WCRP CMIP5: Meteorological Research Institute of MRI/JMA MRI-AGCM3-2H model output collection.

  • The HadGEM1 model is the Met Office Hadley centre global environment model version 1. This version of the model includes a detailed representation of the atmosphere, land surface, ocean, and cryosphere. This dataset includes a control run and a number of climate change experiments. Part of the the UK Met Office Hadley Centre's contributions to the fourth assessment report of the IPCC (Intergovernmental Panel on Climate Change) was based on the HadGEM1 model. This dataset provides all the available data from the control integration (run with preindustrial levels of CO2 and other forcings) as well as output from a number of climate change experiments. The data is provided in the Met Office PP format, but tools are available to extract subsets in NetCDF and other formats.

  • Along-Track Scanning Radiometer (ATSR) mission was funded jointly by the UK Department of Energy and Climate Change External Link (DECC) and the Australian Department of Innovation, Industry, Science and Research External Link (DIISR). This dataset collection contains version 1.1 ATSR-1 Multimission land and sea surface data. The instrument uses thermal channels at 3.7, 10.8, and 12 microns wavelength; and reflected visible/near infra-red channels at 0.555, 0.659, 0.865, and 1.61 microns wavelength. Level 1b products contain gridded brightness temperature and reflectance. Level 2 products contain land and sea-surface temperature, and NDVI at a range of spatial resolutions. The third reprocessing was done to implement updated algorithms, processors, and auxiliary files. The data were acquired by the European Space Agency's (ESA) Envisat satellite, and the NERC Earth Observation Data Centre (NEODC) mirrors the data for UK users.

  • WCRP CMIP5: Geophysical Fluid Dynamics Laboratory (GFDL) GFDL-CM2p1 model output collection.

  • "The Processes controlling dense water formation and transport on Arctic continental shelves". This Project was led by Prof Andrew Willmott of the Proudman Oceanographic Laboratory, with co-investigators at the Proudman Oceanographic Laboratory and Keele University. This dataset collection contains parameterisations for dense water production in polynyas for application in non-polynya resolving ocean circulation models, and results of the testing of these in a coupled sea ice-shelf sea POLCOMS-CICE model of the Barents Sea. The Barents Sea is an important site for the production of dense intermediate water. Up to one half of this intermediate water flows into the North Atlantic over the Scotland-Greenland Ridge, constituting an important branch of the global thermohaline circulation. The presence of numerous coastal polynyas and the relatively low river input into the Barents Sea explain why this region is a significant site for water for water mass transformation. Parameterisations for dense water production in polynyas for application in non-polynya resolving ocean circulation models, were developed and tested in a coupled sea ice-shelf sea model of the Barents Sea. The latter were used to study present day water mass transformation processes and to predict how they will change in a warmer climate. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.