Keyword

ESA

416 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 416
  • The European Space Agency's Synthetic Aperture Radar (SAR) instruments have been flown on board ERS-1, ERS-2 and the Advanced SAR (ASAR) on board Envisat. The ERS-1, ERS-2 and Envisat satellites, launched in 1991, 1995 and 2002 respectively, are ESA multi-payload, Earth observation satellites. This dataset contains Advanced Synthetic Aperture Radar(ASAR) data from the European Remote Sensing satellites ERS-1 and ERS-2, and Advanced SAR data from Envisat. The ERS-1 mission began in 1991 and ended in 2000, and ERS-2 and Envisat are still ongoing. SAR provides high resolution images, ocean wave spectra data and wind direction vector data. They are available through the NEODC to UK based students only.

  • The European Space Agency's Synthetic Aperture Radar (SAR) instruments have been flown on board ERS-1, ERS-2 and the Advanced SAR (ASAR) on board Envisat. The ERS-1, ERS-2 and Envisat satellites, launched in 1991, 1995 and 2002 respectively, are ESA multi-payload, Earth observation satellites. This dataset contains Synthetic Aperture Radar(SAR) data from the European Remote Sensing satellites ERS-1. The ERS-1 mission began in 1991 and ended in 2000, and ERS-2 and Envisat are still ongoing. SAR provides high resolution images, ocean wave spectra data and wind direction vector data. They are available through the NEODC to UK based students only.

  • This dataset contains monthly-averaged land surface temperatures (LSTs) and their uncertainty estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System – Aqua (Aqua). Satellite land surface temperatures are skin temperatures which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to the daytime and night-time Aqua equator crossing times which are 13:30 and 01:30 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset coverage is global over the land surface. LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. MODIS achieves full Earth coverage nearly twice per day so the daily files have small gaps primarily close to the equator where the surface is not covered by the satellite swath on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. Dataset coverage starts on 4th July 2002 and ends on 31st December 2018. There are minor interruptions (1-2 days) during satellite/instrument maintenance periods. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using a generalised split window retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • The data set provides calving front locations of major outlet glaciers of the Greenland Ice Sheet from SAR data from various sensors, produced as part of the ESA Greenland Ice Sheets Climate Change Initiative (CCI) project. Version 1.1 of the dataset has been updated to include information from Sentinel 1 data. The Calving Front Location (CFL) of outlet glaciers from ice sheets is a basic parameter for ice dynamic modelling, for computing the mass fluxes at the calving gate, and for mapping glacier area change. From the ice velocity at the calving front and the time sequence of Calving Front Locations the iceberg calving rate can be computed which is of relevance for estimating the export of ice mass to the ocean. The calving front location has been derived by manual delineation based on SAR or optical satellite data. The CFL product is a collection of ESRI shapefile in latitude and longitude, on WGS84 projection. The basic data are vector line files (not polygons).

  • This dataset contains estimations of Arctic sea level anomalies produced by the ESA Sea Level Climate Change Initiative project (Sea_level_cci), based on satellite altimetry from the ENVISAT and SARAL/Altika satellites. It has been produced by Collecte Localisation Satellites (CLS) and the Plymouth Marine Laboratory (PML). The retrieval of sea level in the Arctic sea ice covered region requires specific processing steps of the satellite altimetry measurements. For this dataset, a specific radar waveform classification method has been applied based on a neural network approach, and the waveform retracking is based on a new adaptive retracking that is able to process both open ocean and peaky echoes measured in leads without introducing any bias between the two types of surfaces. Editing and mapping processing steps have been optimized for this dataset

  • This dataset is a compilation of time series, together with uncertainties, of the following elements of the global mean sea level budget and ocean mass budget: (a) global mean sea level (b) the steric contribution to global mean sea level, that is, the effect of ocean water density change, which is dominated, on a global average, by thermal expansion (c) the mass contribution to global mean sea level (d) the global glaciers contribution (excluding Greenland and Antarctica) (e) the Greenland Ice Sheet and Greenland peripheral glaciers contribution (f) the Antarctic Ice Sheet contribution (g) the contribution from changes in land water storage (including snow cover). The compilation is a result from the Sea-level Budget Closure (SLBC_cci) project conducted in the framework of ESA’s Climate Change Initiative (CCI). It provides assessments of the global mean sea level and ocean mass budgets. Assessment of the global mean sea level budget means to assess how well (a) agrees, within uncertainties, to the sum of (b) and (c) or to the sum of (b), (d), (e), (f) and (g). Assessment of the ocean mass budget means to assess how well (c) agrees to the sum (d), (e), (f) and (g). All time series are expressed in terms of anomalies (in millimetres of equivalent global mean sea level) with respect to the mean value over the 10-year reference period 2006-2015. The temporal resolution is monthly. The temporal range is from January 1993 to December 2016. Some time series do not cover this full temporal range. All time series are complete over the temporal range from January 2003 to August 2016. For some elements, more than one time series are given, as a result of different assessments from different data sources and methods. Data and methods underlying the time series are as follows: (a) satellite altimetry analysis by the Sea Level CCI project. (b) a new analysis of Argo drifter data with incorporation of sea surface temperature data; an alternative time series consists in an ensemble mean over previous global mean steric sea level anomaly time series. (c) analysis of monthly global gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry mission. (d) results from a global glacier model. (e) analysis of satellite radar altimetry over the Greenland Ice Sheet, amended by results from the global glacier model for the Greenland peripheral glaciers; an alternative time series consists of results from GRACE satellite gravimetry. (f) analysis of satellite radar altimetry over the Antarctic Ice Sheet; an alternative time series consists of results from GRACE satellite gravimetry. (g) results from the WaterGAP global hydrological model. Version 2.2 is an update of the previous Version 2.1. The update concerns the estimates of ocean mass change from GRACE.

  • Soil Moisture data (version 06.1) from the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. This dataset collection contains three surface soil moisture datasets alongside ancillary data products. The ACTIVE and PASSIVE products have been created by fusing satellite scatterometer and radiometer soil moisture products respectively. In the case of the ACTIVE product, these have been derived from the AMI-WS and ASCAT satellite instruments and for the PASSIVE product from the satellite instruments SMMR, SSM/I, TMI, AMSR-E, WindSat, FY-3B, AMSR2, SMOS, GPM and SMAP. The COMBINED product is generated from the Level 2 active and passive instruments. The homogenized and merged products present a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The products are provided as global daily images, in NetCDF-4 classic file format, the PASSIVE and COMBINED products covering the period (yyyy-mm-dd) 1978-11-01 to 2020-12-31 and the ACTIVE product covering 1991-08-05 to 2020-12-31. The soil moisture data for the PASSIVE and the COMBINED product are provided in volumetric units [m3 m-3], while the ACTIVE soil moisture data are expressed in percent of saturation [%]. In addition to the main products, an experimental break-adjusted COMBINED product is also provided for the first time at v06.1. For information regarding the theoretical and algorithmic base of the datasets, please see the Algorithm Theoretical Baseline Document (ATBD). Additional documentation and information relating to the datasets can also be found on the CCI Soil Moisture project web site or in the Product User Guide. The data set should be cited using all of the following references: 1. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019 2. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 If using the COMBINED break-adjusted product, the following should also be cited in addition to the above: 3. Preimesberger, W., Scanlon, T., Su, C. -H., Gruber, A. and Dorigo, W., "Homogenization of Structural Breaks in the Global ESA CCI Soil Moisture Multisatellite Climate Data Record," in IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 2845-2862, April 2021, doi: 10.1109/TGRS.2020.3012896.

  • The European Space Agency (ESA) Sea Surface Salinity Climate Change Initiative (CCI) consortium has produced global, level 4, multi-sensor Sea Surface Salinity maps covering the 2010-2020 period. This dataset collection contains Sea Surface Salinity (SSS) v03.21 data at a spatial resolution of 50km and a time resolution of 1 week. It has been spatially sampled on a 25km EASE (Equal Area Scalable Earth) grid and 1 day of time sampling. A monthly product is also available, at a spatial resolution of 25 km and a time resolution of 1 month. This has been spatially sampled on a 25 km EASE (Equal Area Scalable Earth) grid and 15 days of time sampling. In addition to salinity, information on errors are provided. For more information, see the user guide and product documentation available on the Sea Surface Salinity CCI web page (linked below). Compared to the previous version of the data, version 3 SSS and associated uncertainties are more precise and cover a longer period (Jan 2010-sept 2020); version 3 SSS are provided closer to land than version 2 SSS, with a possible degraded quality. Users might remove these additional near land data by using the lsc_qc flag.

  • This collection of data forms the Permafrost Climate Research Data Package (CRDP v2), which comprises the Version 3.0 Permafrost data products from the European Space Agency's (ESA) Climate Change Initiative (CCI) Permafrost project. Data products include Ground Temperature, Active Layer Thickness and Permafrost Extent for the Northern Hemisphere (north of 30°) for the period 1997-2019. They are derived from a thermal model driven and constrained by satellite data. Gridded products are released in annual files, covering the start to the end of the Julian year. This corresponds to average annual ground temperatures, as well as the maximum depth of seasonal thaw, which corresponds to the active layer thickness.

  • Soil Moisture data (version 04.4) from the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. This dataset collection contains three surface soil moisture datasets, alongside ancilliary data products. The ACTIVE and PASSIVE products have been created by fusing scatterometer and radiometer soil moisture products respectively. In the case of the ACTIVE product, these have been derived from AMI-WS and ASCAT instruments and for the PASSIVE product from the instruments SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2 and SMOS. The COMBINED product is generated from the Level 2 active and passive instruments.. The homogenized and merged products present a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The products are provided as global daily images, in NetCDF-4 classic file format, the PASSIVE and COMBINED products covering the period (yyyy-mm-dd) 1978-11-01 to 2018-06-30 and the ACTIVE product covering 1991-08-05 to 2018-06-30. The soil moisture data for the PASSIVE and the COMBINED product are provided in volumetric units [m3 m-3], while the ACTIVE soil moisture data are expressed in percent of saturation [%]. For information regarding the theoretical and algorithmic base of the datasets, please see the Algorithm Theoretical Baseline Document (ATBD). Other additional documentation and information documentation relating to the datasets can also be found on the CCI Soil Moisture project web site or in the Product Specification Document. The data set should be cited using the all of the following references: 1. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 2. Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2017.2734070 3. Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M. , Wagner, W., McCabe, M.F., Evans, J.P., van Dijk, A.I.J.M. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297, doi: 10.1016/j.rse.2012.03.014 4. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture Climate Data Records and their underlying merging methodology, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-21, in review, 2019.