Keyword

ESA

416 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 416
  • This dataset contains monthly-averaged land surface temperatures (LSTs) and their uncertainty estimates from multiple Infra-Red (IR) instruments on satellites in Geostationary Earth Orbit (GEO) and Low Earth Orbiting (LEO) sun-synchronous (a.k.a. polar orbiting) satellites. Satellite land surface temperatures are skin temperatures, which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. LST fields are provided at 3 hourly intervals each day (00:00 UTC, 03:00 UTC, 06:00 UTC, 09:00 UTC, 12:00 UTC, 15:00 UTC, 18:00 UTC and 21:00 UTC). Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and the solar geometry angles. The product is based on merging of available GEO data and infilling with available LEO data outside of the GEO discs. Inter-instrument biases are accounted for by cross-calibration with the IASI instruments on METOP and LSTs are retrieved using a Generalised Split Window algorithm from all instruments. As data towards the edge of the GEO disc is known to have greater uncertainty, any datum with a satellite zenith angle of more than 60 degrees is discarded. All LSTs included have an observation time that lies within +/- 30 minutes of the file nominal Universal Time. Data from the following instruments is included in the dataset: geostationary, Imagers on Geostationary Operational Environmental Satellite (GOES) 12 and GOES 13, Advanced Baseline Imager (ABI) on GOES 16, Spinning Enhanced Visible Infra-Red Imager (SEVIRI) on Meteosat Second Generation (MSG) 1, MSG 2, MSG 3, and MSG 4, Japanese Advanced Meteorological Imager (JAMI) on Multifunctional Transport Satellite MTSAT) 1, and MTSAT 2; and polar, Advanced Along-Track Scanning Radiometer (AATSR) on Environmental Satellite (Envisat), Moderate-resolution Imaging Spectroradiometer (MODIS) on Earth Observation System (EOS) - Aqua and EOS - Terra, Sea and Land Surface Temperature Radiometer SLSTR on Sentinel-3A and Sentinel-3B. However, it should be noted that which instruments contribute to a particular product file depends on depends on mission start and end dates and instrument downtimes. Dataset coverage starts on 1st January 2009 and ends on 31st December 2020. LSTs are provided on a global equal angle grid at a resolution of 0.05° longitude and 0.05° latitude. The dataset coverage is nominally global over the land surface but varies depending on satellite and instrument availability and coverage. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. The dataset was produced by the University of Leicester (UoL) and data were processed in the UoL processing chain. The Geostationary data were produced by the Instituto Português do Mar e da Atmosfera (IPMA) before being merged into the final dataset. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • The European Space Agency's Synthetic Aperture Radar (SAR) instruments have been flown on board ERS-1, ERS-2 and the Advanced SAR (ASAR) on board Envisat. The ERS-1, ERS-2 and Envisat satellites, launched in 1991, 1995 and 2002 respectively, are ESA multi-payload, Earth observation satellites. This dataset contains Synthetic Aperture Radar(SAR) data from the European Remote Sensing satellites ERS-2. The ERS-1 mission began in 1991 and ended in 2000, and ERS-2 and Envisat are still ongoing. SAR provides high resolution images, ocean wave spectra data and wind direction vector data. They are available through the NEODC to UK based students only.

  • Radio propagation measurements at 40 GHz at Chilbolton, Hampshire for the ESA funded Large Scale Assessment of KA/Q band atmospheric channel using the ALPHASAT TDP5 Propagation beacon signal.

  • These data comprise v1.8 of the Sea Surface Salinity (SSS) Essential Climate Variable (ECV) dataset produced as part of the European Space Agency's (ESA) Climate Change Initiative (CCI) programme. The ESA CCI Sea Surface Salinity ECV data have been produced at a spatial resolution of 50 km and spatiallly resampled on a 25km EASE (Equal Area Scalable Earth) grid and a) with a time resolution of 1 week and 1 day of time sampling and b) a time resolution of 1 month and 15 days of time sampling. This first version (v1.8) of the CCI+SSS products is a preliminary version issued for evaluation purposes by voluntary scientists and for framing future CCI+SSS products. This product has not been fully validated yet and may contain flaws. In case you discover some, the CCI Sea Surface Salinity project (Mngt_CCI-Salinity@argans.co.uk) are very keen to get your feedback. In case you would like to use them in a presentation or publication, please be aware of the following caveats: CAVEATS - The SSS random error in the weekly product is overestimated by a factor ~1.4. - The Number of outliers is wrongly set to 'NaN' in the case where it is equal to zero. - Products have not yet been not optimised for some issues encountered at high latitudes (i.e. remaining ice, RFI pollution, biases due to land-sea contamination and dielectric constant in cold waters). - The criteria for flagging data close to land (including islands) are conservative and likely to be too restrictive in places. - There is a systematic global underestimation (-0.08) of SSS starting at the beginning of the data set, and gradually disappearing at the end of 2010. - There is a seasonal varying bias (~0.1, peaking in the middle of the year) in the Pacific North of 25°N". Acknowledgements: The authors thank the CCI+ SSS validation team, in particular S. Guimbard (ODL) and A. Martin (NOC), for their feedback on the products, R. Catany (ARGANS) for managing the project and P. Cipollini and C. Donlon (ESA) for their sound advice.

  • Soil Moisture data (version 04.5) from the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. This dataset collection contains three surface soil moisture datasets, alongside ancilliary data products. The ACTIVE and PASSIVE products have been created by fusing satellite scatterometer and radiometer soil moisture products respectively. In the case of the ACTIVE product, these have been derived from the AMI-WS and ASCAT satellite instruments and for the PASSIVE product from the satellite instruments SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2 and SMOS. The COMBINED product is generated from the Level 2 active and passive instruments.. The homogenized and merged products present a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The products are provided as global daily images, in NetCDF-4 classic file format, the PASSIVE and COMBINED products covering the period (yyyy-mm-dd) 1978-11-01 to 2018-12-31 and the ACTIVE product covering 1991-08-05 to 2018-12-31. The soil moisture data for the PASSIVE and the COMBINED product are provided in volumetric units [m3 m-3], while the ACTIVE soil moisture data are expressed in percent of saturation [%]. For information regarding the theoretical and algorithmic base of the datasets, please see the Algorithm Theoretical Baseline Document (ATBD). Other additional documentation and information documentation relating to the datasets can also be found on the CCI Soil Moisture project web site or in the Product Specification Document. The data set should be cited using the all of the following references: 1. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019 2. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 3. Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2017.2734070

  • This collection of data is a Beta version of the Permafrost Climate Research Data Package (CRDP v0), which comprises the Version 1.0 Permafrost data products from the European Space Agency's (ESA) Climate Change Initiative (CCI) Permafrost project. Data products include Ground Temperature, Active Layer Thickness and Permafrost Extent for the Northern Hemisphere (north of 30°) for the period 2003-2017. They are derived from a thermal model driven and constrained by satellite data. Gridded products are released in annual files, covering the start to the end of the Julian year. This corresponds to average annual ground temperatures, as well as the maximum depth of seasonal thaw, which corresponds to the active layer thickness.

  • The ESA Glaciers Climate Change Initiative (CCI) dataset consists of data produced by the ESA CCI Glaciers Project. The main objective of the Glaciers_cci project is to contribute to the efforts of creating a globally complete and detailed glacier inventory as requested in action T2.1 by GCOS (2006). This activity has two major parts: One is data creation (glacier outlines) in selected and currently still missing key regions, and the other one is in establishing a more consistent framework for glacier entity identification to enhance the integrity and error characterization of the available data sets. As meltwater from glaciers and ice caps provide a substantial contribution to global sea-level rise, the project will also create two additional products in selected key regions, elevation changes and velocity fields

  • Soil Moisture data (version 05.3) from the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. This dataset collection contains three surface soil moisture datasets, alongside ancilliary data products. The ACTIVE and PASSIVE products have been created by fusing satellite scatterometer and radiometer soil moisture products respectively. In the case of the ACTIVE product, these have been derived from the AMI-WS and ASCAT satellite instruments and for the PASSIVE product from the satellite instruments SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2, SMOS and SMAP. The COMBINED product is generated from the Level 2 active and passive instruments. The homogenized and merged products present a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The products are provided as global daily images, in NetCDF-4 classic file format, the PASSIVE and COMBINED products covering the period (yyyy-mm-dd) 1978-11-01 to 2020-12-31 and the ACTIVE product covering 1991-08-05 to 2020-12-31. The soil moisture data for the PASSIVE and the COMBINED product are provided in volumetric units [m3 m-3], while the ACTIVE soil moisture data are expressed in percent of saturation [%]. For information regarding the theoretical and algorithmic base of the datasets, please see the Algorithm Theoretical Baseline Document (ATBD). Other additional documentation and information documentation relating to the datasets can also be found on the CCI Soil Moisture project web site or in the Product Specification Document. The data set should be cited using the all of the following references: 1. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019 2. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 3. Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2017.2734070

  • The European Space Agency (ESA) Sea Surface Salinity Climate Change Initiative (CCI) consortium has produced global, level 4, multi-sensor Sea Surface Salinity maps covering the 2010-2020 period. This dataset collection contains Sea Surface Salinity (SSS) v03.21 data at a spatial resolution of 50km and a time resolution of 1 week. It has been spatially sampled on a 25km EASE (Equal Area Scalable Earth) grid and 1 day of time sampling. A monthly product is also available, at a spatial resolution of 25 km and a time resolution of 1 month. This has been spatially sampled on a 25 km EASE (Equal Area Scalable Earth) grid and 15 days of time sampling. In addition to salinity, information on errors are provided. For more information, see the user guide and product documentation available on the Sea Surface Salinity CCI web page (linked below). Compared to the previous version of the data, version 3 SSS and associated uncertainties are more precise and cover a longer period (Jan 2010-sept 2020); version 3 SSS are provided closer to land than version 2 SSS, with a possible degraded quality. Users might remove these additional near land data by using the lsc_qc flag.

  • Soil Moisture data (version 04.4) from the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. This dataset collection contains three surface soil moisture datasets, alongside ancilliary data products. The ACTIVE and PASSIVE products have been created by fusing scatterometer and radiometer soil moisture products respectively. In the case of the ACTIVE product, these have been derived from AMI-WS and ASCAT instruments and for the PASSIVE product from the instruments SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2 and SMOS. The COMBINED product is generated from the Level 2 active and passive instruments.. The homogenized and merged products present a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The products are provided as global daily images, in NetCDF-4 classic file format, the PASSIVE and COMBINED products covering the period (yyyy-mm-dd) 1978-11-01 to 2018-06-30 and the ACTIVE product covering 1991-08-05 to 2018-06-30. The soil moisture data for the PASSIVE and the COMBINED product are provided in volumetric units [m3 m-3], while the ACTIVE soil moisture data are expressed in percent of saturation [%]. For information regarding the theoretical and algorithmic base of the datasets, please see the Algorithm Theoretical Baseline Document (ATBD). Other additional documentation and information documentation relating to the datasets can also be found on the CCI Soil Moisture project web site or in the Product Specification Document. The data set should be cited using the all of the following references: 1. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 2. Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2017.2734070 3. Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M. , Wagner, W., McCabe, M.F., Evans, J.P., van Dijk, A.I.J.M. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297, doi: 10.1016/j.rse.2012.03.014 4. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture Climate Data Records and their underlying merging methodology, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-21, in review, 2019.