CCI
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
-
These data comprise v1.8 of the Sea Surface Salinity (SSS) Essential Climate Variable (ECV) dataset produced as part of the European Space Agency's (ESA) Climate Change Initiative (CCI) programme. The ESA CCI Sea Surface Salinity ECV data have been produced at a spatial resolution of 50 km and spatiallly resampled on a 25km EASE (Equal Area Scalable Earth) grid and a) with a time resolution of 1 week and 1 day of time sampling and b) a time resolution of 1 month and 15 days of time sampling. This first version (v1.8) of the CCI+SSS products is a preliminary version issued for evaluation purposes by voluntary scientists and for framing future CCI+SSS products. This product has not been fully validated yet and may contain flaws. In case you discover some, the CCI Sea Surface Salinity project (Mngt_CCI-Salinity@argans.co.uk) are very keen to get your feedback. In case you would like to use them in a presentation or publication, please be aware of the following caveats: CAVEATS - The SSS random error in the weekly product is overestimated by a factor ~1.4. - The Number of outliers is wrongly set to 'NaN' in the case where it is equal to zero. - Products have not yet been not optimised for some issues encountered at high latitudes (i.e. remaining ice, RFI pollution, biases due to land-sea contamination and dielectric constant in cold waters). - The criteria for flagging data close to land (including islands) are conservative and likely to be too restrictive in places. - There is a systematic global underestimation (-0.08) of SSS starting at the beginning of the data set, and gradually disappearing at the end of 2010. - There is a seasonal varying bias (~0.1, peaking in the middle of the year) in the Pacific North of 25°N". Acknowledgements: The authors thank the CCI+ SSS validation team, in particular S. Guimbard (ODL) and A. Martin (NOC), for their feedback on the products, R. Catany (ARGANS) for managing the project and P. Cipollini and C. Donlon (ESA) for their sound advice.
-
Soil Moisture data (version 03.2) from the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. This dataset collection contains three surface soil moisture datasets, alongside ancilliary data products. The 'Active' and 'Passive' products have been created by fusing scatterometer and radiometer soil moisture products respectively. In the case of the 'Active' product, these have been derived from AMI-WS and ASCAT satellite instruments and for the 'Passive' product from the instruments SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2 and SMOS. The 'Combined Product' is then a blended product based on the former two data sets. The homogenized and merged products present a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The products are provided as global daily images, in NetCDF-4 classic file format, the Passive and Combined products covering the period (yyyy-mm-dd) 1978-11-01 to 2014-12-31 and the Active product covering 1991-08-05 to 2014-12-31. The soil moisture data for the Passive and the Combined product are provided in volumetric units [m3 m-3], while the active soil moisture data are expressed in percent of saturation [%]. For information regarding the theoretical and algorithmic base of the datasets, please see the Algorithm Theoretical Baseline Document (ATBD) or the paper by Wagner 2012, both available in linked documentation. Other additional documentation and information documentation relating to the datasets can also be found on the CCI Soil Moisture project web site or in the Product Specification Document. The data set should be cited using all three of the following references: 1. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 2. Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2017.2734070 3. Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M. , Wagner, W., McCabe, M.F., Evans, J.P., van Dijk, A.I.J.M. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297, doi: 10.1016/j.rse.2012.03.014
-
The European Space Agency (ESA) Sea Surface Salinity Climate Change Initiative (CCI) consortium has produced global, level 4, multi-sensor Sea Surface Salinity maps covering the 2010-2020 period. This dataset collection contains Sea Surface Salinity (SSS) v03.21 data at a spatial resolution of 50km and a time resolution of 1 week. It has been spatially sampled on a 25km EASE (Equal Area Scalable Earth) grid and 1 day of time sampling. A monthly product is also available, at a spatial resolution of 25 km and a time resolution of 1 month. This has been spatially sampled on a 25 km EASE (Equal Area Scalable Earth) grid and 15 days of time sampling. In addition to salinity, information on errors are provided. For more information, see the user guide and product documentation available on the Sea Surface Salinity CCI web page (linked below). Compared to the previous version of the data, version 3 SSS and associated uncertainties are more precise and cover a longer period (Jan 2010-sept 2020); version 3 SSS are provided closer to land than version 2 SSS, with a possible degraded quality. Users might remove these additional near land data by using the lsc_qc flag.
-
The Greenland Ice Sheet CCI project aims to maximize the impact of ESA satellite data on climate research, by analysing data from ESA Earth Observation missions such as ERS, Envisat, CryoSat, GRACE and the new Sentinel series of satellites. Over the last decade, the Greenland Ice Sheet has shown rapid change, characterized by rapid thinning along the margins, accelerating outlet glaciers, and overall increasing mass loss. The state of the Greenland Ice Sheet is of global importance, and has consequently been included in the ESA CCI Programme as a monitored Essential Climate Variable (ECV). The project is producing data products of the following five parameters, which are important in characterizing the Greenland Ice Sheet as an Essential Climate Variable: Surface Elevation Change (SEC) gridded data from radar altimetry; Ice Velocity (IV) gridded data from synthetic aperture radar interferometry and feature tracking; Calving Front Location (CFL) time series of marine-terminating glaciers; Grounding Line Location (GLL) time series of marine-terminating glaciers; Gravimetry Mass Balance (GMB) maps and time series.
-
Soil Moisture data (version 03.3) from the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. This dataset collection contains three surface soil moisture datasets, alongside ancilliary data products. The 'Active' and 'Passive' products have been created by fusing scatterometer and radiometer soil moisture products respectively. In the case of the 'Active' product, these have been derived from AMI-WS and ASCAT satellite instruments and for the 'Passive' product from the instruments SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2 and SMOS. The 'Combined Product' is then a blended product based on the former two data sets. The homogenized and merged products present a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The products are provided as global daily images, in NetCDF-4 classic file format, the Passive and Combined products covering the period (yyyy-mm-dd) 1978-11-01 to 2016-12-31 and the Active product covering 1991-08-05 to 2016-12-31. The soil moisture data for the Passive and the Combined product are provided in volumetric units [m3 m-3], while the active soil moisture data are expressed in percent of saturation [%]. For information regarding the theoretical and algorithmic base of the datasets, please see the Algorithm Theoretical Baseline Document (ATBD). Other additional documentation and information documentation relating to the datasets can also be found on the CCI Soil Moisture project web site or in the Product Specification Document. The data set should be cited using all three of the following references: 1. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 2. Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2017.2734070 3. Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M. , Wagner, W., McCabe, M.F., Evans, J.P., van Dijk, A.I.J.M. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297, doi: 10.1016/j.rse.2012.03.014
-
Soil Moisture data (version 02.2) from the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. This dataset collection contains three surface soil moisture datasets, alongside ancilliary data products. The 'Active' and 'Passive' products have been created by fusing scatterometer and radiometer soil moisture products respectively. In the case of the 'Active' product, these have been derived from AMI-WS and ASCAT satellite instruments and for the 'Passive' product from the instruments SMMR, SSM/I, TMI, AMSR-E, WindSat, and AMSR2. The 'Combined Product' is then a blended product based on the former two data sets. The homogenized and merged products present a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The products are provided as global daily images, in NetCDF-4 classic file format, the Passive and Combined products covering the period (yyyy-mm-dd) 1978-11-01 to 2014-12-31 and the Active product covering 1991-08-05 to 2014-12-31. The soil moisture data for the Passive and the Combined product are provided in volumetric units [m3 m-3], while the active soil moisture data are expressed in percent of saturation [%]. For information regarding the theoretical and algorithmic base of the datasets, please see the Algorithm Theoretical Baseline Document (ATBD) or the paper by Wagner 2012, both available in linked documentation. Other additional documentation and information documentation relating to the datasets can also be found on the CCI Soil Moisture project web site or in the Product Specification Document. The data set should be cited using all three of the following references: 1. Liu, Y. Y., W. A. Dorigo, et al. (2012). "Trend-preserving blending of passive and active microwave soil moisture retrievals." Remote Sensing of Environment 123: 280-297. 2. Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., Evans, J. P. (2011). Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrology and Earth System Sciences, 15, 425-436 3. Wagner, W., W. Dorigo, R. de Jeu, D. Fernandez, J. Benveniste, E. Haas, M. Ertl (2012). Fusion of active and passive microwave observations to create an Essential Climate Variable data record on soil moisture. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), Volume I-7, XXII ISPRS Congress, Melbourne, Australia, 25 August-1 September 2012, 315-321
-
This collection of data forms the Permafrost Climate Research Data Package (CRDP v1), which comprises the Version 2.0 Permafrost data products from the European Space Agency's (ESA) Climate Change Initiative (CCI) Permafrost project. Data products include Ground Temperature, Active Layer Thickness and Permafrost Extent for the Northern Hemisphere (north of 30°) for the period 1997-2018. They are derived from a thermal model driven and constrained by satellite data. Gridded products are released in annual files, covering the start to the end of the Julian year. This corresponds to average annual ground temperatures, as well as the maximum depth of seasonal thaw, which corresponds to the active layer thickness.
-
Soil Moisture data (version 02.1) from the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. This dataset collection contains three surface soil moisture datasets, alongside ancilliary data products. The 'Active' and 'Passive' products have been created by fusing scatterometer and radiometer soil moisture products respectively. In the case of the 'Active' product, these have been derived from the AMI-WS and ASCAT satellite instruments and for the 'Passive' product from the instruments SMMR, SSM/I, TMI, AMSR-E, WindSat, and AMSR2. The 'Combined Product' is then a blended product based on the former two data sets. The homogenized and merged products present a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The products are provided as global daily images, in NetCDF-4 classic file format, the Passive and Combined products covering the period (yyyy-mm-dd) 1978-11-01 to 2014-12-31 and the Active product covering 1991-08-05 to 2014-12-31. The soil moisture data for the Passive and the Combined product are provided in volumetric units [m3 m-3], while the active soil moisture data are expressed in percent of saturation [%]. For information regarding the theoretical and algorithmic base of the datasets, please see the Algorithm Theoretical Baseline Document (ATBD) or the paper by Wagner 2012, both available in linked documentation. Other additional documentation and information documentation relating to the datasets can also be found on the CCI Soil Moisture project web site or in the Product Specification Document. The data set should be cited using all three references as follows: 1. Liu, Y. Y., W. A. Dorigo, et al. (2012). "Trend-preserving blending of passive and active microwave soil moisture retrievals." Remote Sensing of Environment 123: 280-297. 2. Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., Evans, J. P. (2011). Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrology and Earth System Sciences, 15, 425-436 3. Wagner, W., W. Dorigo, R. de Jeu, D. Fernandez, J. Benveniste, E. Haas, M. Ertl (2012). Fusion of active and passive microwave observations to create an Essential Climate Variable data record on soil moisture. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), Volume I-7, XXII ISPRS Congress, Melbourne, Australia, 25 August-1 September 2012, 315-321
-
Soil Moisture data (version 04.4) from the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. This dataset collection contains three surface soil moisture datasets, alongside ancilliary data products. The ACTIVE and PASSIVE products have been created by fusing scatterometer and radiometer soil moisture products respectively. In the case of the ACTIVE product, these have been derived from AMI-WS and ASCAT instruments and for the PASSIVE product from the instruments SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2 and SMOS. The COMBINED product is generated from the Level 2 active and passive instruments.. The homogenized and merged products present a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. The products are provided as global daily images, in NetCDF-4 classic file format, the PASSIVE and COMBINED products covering the period (yyyy-mm-dd) 1978-11-01 to 2018-06-30 and the ACTIVE product covering 1991-08-05 to 2018-06-30. The soil moisture data for the PASSIVE and the COMBINED product are provided in volumetric units [m3 m-3], while the ACTIVE soil moisture data are expressed in percent of saturation [%]. For information regarding the theoretical and algorithmic base of the datasets, please see the Algorithm Theoretical Baseline Document (ATBD). Other additional documentation and information documentation relating to the datasets can also be found on the CCI Soil Moisture project web site or in the Product Specification Document. The data set should be cited using the all of the following references: 1. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 2. Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2017.2734070 3. Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M. , Wagner, W., McCabe, M.F., Evans, J.P., van Dijk, A.I.J.M. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297, doi: 10.1016/j.rse.2012.03.014 4. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture Climate Data Records and their underlying merging methodology, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-21, in review, 2019.
-
This dataset is a compilation of time series, together with uncertainties, of the following elements of the global mean sea level budget and ocean mass budget: (a) global mean sea level (b) the steric contribution to global mean sea level, that is, the effect of ocean water density change, which is dominated, on a global average, by thermal expansion (c) the mass contribution to global mean sea level (d) the global glaciers contribution (excluding Greenland and Antarctica) (e) the Greenland Ice Sheet and Greenland peripheral glaciers contribution (f) the Antarctic Ice Sheet contribution (g) the contribution from changes in land water storage (including snow cover). The compilation is a result from the Sea-level Budget Closure (SLBC_cci) project conducted in the framework of ESA’s Climate Change Initiative (CCI). It provides assessments of the global mean sea level and ocean mass budgets. Assessment of the global mean sea level budget means to assess how well (a) agrees, within uncertainties, to the sum of (b) and (c) or to the sum of (b), (d), (e), (f) and (g). Assessment of the ocean mass budget means to assess how well (c) agrees to the sum (d), (e), (f) and (g). All time series are expressed in terms of anomalies (in millimetres of equivalent global mean sea level) with respect to the mean value over the 10-year reference period 2006-2015. The temporal resolution is monthly. The temporal range is from January 1993 to December 2016. Some time series do not cover this full temporal range. All time series are complete over the temporal range from January 2003 to August 2016. For some elements, more than one time series are given, as a result of different assessments from different data sources and methods. Data and methods underlying the time series are as follows: (a) satellite altimetry analysis by the Sea Level CCI project. (b) a new analysis of Argo drifter data with incorporation of sea surface temperature data; an alternative time series consists in an ensemble mean over previous global mean steric sea level anomaly time series. (c) analysis of monthly global gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry mission. (d) results from a global glacier model. (e) analysis of satellite radar altimetry over the Greenland Ice Sheet, amended by results from the global glacier model for the Greenland peripheral glaciers; an alternative time series consists of results from GRACE satellite gravimetry. (f) analysis of satellite radar altimetry over the Antarctic Ice Sheet; an alternative time series consists of results from GRACE satellite gravimetry. (g) results from the WaterGAP global hydrological model. Version 2.2 is an update of the previous Version 2.1. The update concerns the estimates of ocean mass change from GRACE.