Orbview-2
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
-
The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 3.1 inherent optical properties (IOP) product (in mg/m3) on a geographic projection at approximately 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites). Note, this the IOP data is also included in the 'All Products' dataset. The inherent optical properties (IOP) dataset consists of the total absorption and particle backscattering coefficients, and, additionally, the fraction of detrital & dissolved organic matter absorption and phytoplankton absorption. The total absorption (units m-1), the total backscattering (m-1), the absorption by detrital and coloured dissolved organic matter, the backscattering by particulate matter, and the absorption by phytoplankton share the same spatial resolution of ~4 km. The values of IOP are reported for the standard SeaWiFS wavelengths (412, 443, 490, 510, 555, 670nm). This data product is on a geographic grid projection, which is a direct conversion of latitude and longitude coordinates to a rectangular grid, typically a fixed multiplier of 360x180. The netCDF files follow the CF convention for this projection with a resolution of 8640x4320. (A separate dataset is also available for data on a sinusoidal projection.)
-
The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains all their Version 1.0 generated ocean colour products on a geographic projection at 4 km spatial resolution and at an 8-day time resolution. Data products being produced include: phytoplankton chlorophyll-a concentration; remote-sensing reflectance at six wavelengths; total absorption and backscattering coefficients; phytoplankton absorption coefficient and absorption coefficients for dissolved and detrital material; and the diffuse attenuation coefficient for downwelling irradiance for light of wavelength 490nm. Information on uncertainties is also provided. This data product is on a geographic grid projection, which is a direct conversion of latitude and longitude coordinates to a rectangular grid, typically a fixed multiplier of 360x180. The netCDF files follow the CF convention for this projection with a resolution of 8640x4320. (A separate dataset is also available for data on a sinusoidal projection.)
-
The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains all their Version 1.0 generated ocean colour products on a geographic projection at 4 km spatial resolution and at a yearly time resolution. Data products being produced include: phytoplankton chlorophyll-a concentration; remote-sensing reflectance at six wavelengths; total absorption and backscattering coefficients; phytoplankton absorption coefficient and absorption coefficients for dissolved and detrital material; and the diffuse attenuation coefficient for downwelling irradiance for light of wavelength 490nm. Information on uncertainties is also provided. This data product is on a geographic grid projection, which is a direct conversion of latitude and longitude coordinates to a rectangular grid, typically a fixed multiplier of 360x180. The netCDF files follow the CF convention for this projection with a resolution of 8640x4320.
-
The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains all their Version 1.0 generated ocean colour products on a sinusoidal projection at 4 km spatial resolution and at a daily time resolution. Data products being produced include: phytoplankton chlorophyll-a concentration; remote-sensing reflectance at six wavelengths; total absorption and backscattering coefficients; phytoplankton absorption coefficient and absorption coefficients for dissolved and detrital material; and the diffuse attenuation coefficient for downwelling irradiance for light of wavelength 490nm. Information on uncertainties is also provided. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection.)
-
The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 1.0 inherent optical properties (IOP) product (in mg/m3) on a geographic projection at approximately 4 km spatial resolution and at a daily time resolution. Note, this dataset is also included in the 'All Products' dataset. The inherent optical properties (IOP) dataset consists of the total absorption and particle backscattering coefficients, and, additionally, the fraction of detrital & dissolved organic matter absorption and phytoplankton absorption. The total absorption (units m-1), the total backscattering (m-1), the absorption by detrital and coloured dissolved organic matter, the backscattering by particulate matter, and the absorption by phytoplankton share the same spatial resolution of ~4 km. The values of IOP are reported for the standard SeaWiFS wavelengths (412, 443, 490, 510, 555, 670nm). This data product is on a geographic grid projection, which is a direct conversion of latitude and longitude coordinates to a rectangular grid, typically a fixed multiplier of 360x180. The netCDF files follow the CF convention for this projection with a resolution of 8640x4320. (A separate dataset is also available for data on a sinusoidal projection.)
-
The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains the Version 1.0 Remote Sensing Reflectance product on a sinusoidal projection at approximately 4 km spatial resolution and at a daily time resolution. Values for remote sensing reflectance at the sea surface are provided for the standard SeaWiFS wavelengths (412, 443, 490, 510, 555, 670nm) with pixel-by-pixel uncertainty estimates for each wavelength. These are merged products based on SeaWiFS, MERIS and Aqua-MODIS data. Note, this dataset is also contained within the 'All Products' dataset. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection).
-
The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 1.0 chlorophyll-a product (in mg/m3) on a geographic projection at 4 km spatial resolution and at a daily time resolution. Note, this dataset is also included in the 'All Products' dataset. This data product is on a geographic grid projection, which is a direct conversion of latitude and longitude coordinates to a rectangular grid, typically a fixed multiplier of 360x180. The netCDF files follow the CF convention for this projection with a resolution of 8640x4320. (A separate dataset is also available for data on a sinusoidal projection.)
-
The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains the Version 1.0 Kd490 attenuation coefficient (m-1) for downwelling irradiance product on a sinusoidal projection at approximately 4 km spatial resolution and at a daily time resolution. It is computed from the Ocean Colour CCI Version 1 inherent optical properties dataset at 490 nm and the solar zenith angle. Note, this dataset is also contained within the 'All Products' dataset. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection).
-
The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains all their Version 1.0 generated ocean colour products on a sinusoidal projection at 4 km spatial resolution and at an 8-day time resolution. Data products being produced include: phytoplankton chlorophyll-a concentration; remote-sensing reflectance at six wavelengths; total absorption and backscattering coefficients; phytoplankton absorption coefficient and absorption coefficients for dissolved and detrital material; and the diffuse attenuation coefficient for downwelling irradiance for light of wavelength 490nm. Information on uncertainties is also provided. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a sinusoidal projection.)
-
The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains all their Version 1.0 generated ocean colour products on a geographic projection at 4 km spatial resolution and at a daily time resolution. Data products being produced include: phytoplankton chlorophyll-a concentration; remote-sensing reflectance at six wavelengths; total absorption and backscattering coefficients; phytoplankton absorption coefficient and absorption coefficients for dissolved and detrital material; and the diffuse attenuation coefficient for downwelling irradiance for light of wavelength 490nm. Information on uncertainties is also provided. This data product is on a geographic grid projection, which is a direct conversion of latitude and longitude coordinates to a rectangular grid, typically a fixed multiplier of 360x180. The netCDF files follow the CF convention for this projection with a resolution of 8640x4320. (A separate dataset is also available for data on a sinusoidal projection.)