Keyword

CCI

444 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 444
  • This dataset provides a version of the Cloud_cci ATSR2-AATSRv3 monthly gridded dataset in Obs4MIPs format. The Cloud_cci ATSR2-AATSRv3 dataset (covering 1995-2012) was generated within the Cloud_cci project, which was funded by the European Space Agency (ESA) as part of the ESA Climate Change Initiative (CCI) programme (Contract No.: 4000109870/13/I-NB). This dataset is based on measurements taken by the Along-Track Scanning Radiometer (ATSR-2) on-board the European Remote Sensing Satellite -2 (ERS-2), and by the Advanced Along-Track Scanning Radiometer (AATSR) on-board the Environmental Satellite (Envisat). It contains a variety of cloud properties which were derived employing the Community Cloud retrieval for Climate (CC4CL) retrieval framework. This particular Obs4MIPS product has been generated for inclusion in Obs4MIPs (Observations for Model Intercomparisons Project), which is an activity to make observational products more accessible for climate model intercomparisons. Individual files are provided covering seven cloud variables: Cloud area fraction in atmospheric layer (clCCI); Atmospheric cloud ice content (clivi); Cloud area fraction (cltCCI); Liquid water cloud area fraction in atmospheric layer(clwCCI); Liquid water cloud area fraction (clwtCCI); Atmosphere mass content of cloud condensed water (clwvi); Air pressure at cloud top (pctCCI)

  • This v2.0 SST_cci Along-Track Scanning Radiometer (ATSR) Level 2 Preprocessed (L2P) Climate Data Record (CDR) consists of stable, low-bias sea surface temperature (SST) data from the ATSR series of satellite instruments. It covers the period between 11/1991 - 04/2012. This L2P product provides these SST data on the original satellite swath with a single orbit of data per file. The dataset has been produced as part of the European Space Agency (ESA) Climate Change Initiative Sea Surface Temperature project (ESA SST_cci). The data products from SST_cci accurately map the surface temperature of the global oceans over the period 1981 to 2016 using observations from many satellites. The data provide independently quantified SSTs to a quality suitable for climate research. Data are made freely and openly available under a Creative Commons License by Attribution (CC By 4.0) https://creativecommons.org/licenses/by/4.0/ .

  • This dataset contains land surface temperatures (LSTs) and their uncertainty estimates from multiple Infra-Red (IR) instruments on satellites in Geostationary Earth Orbit (GEO) and Low Earth Orbiting (LEO) sun-synchronous (a.k.a. polar orbiting) satellites. Satellite land surface temperatures are skin temperatures, which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. LST fields are provided at 3 hourly intervals each day (00:00 UTC, 03:00 UTC, 06:00 UTC, 09:00 UTC, 12:00 UTC, 15:00 UTC, 18:00 UTC and 21:00 UTC). Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and the solar geometry angles. The product is based on merging of available GEO data and infilling with available LEO data outside of the GEO discs. Inter-instrument biases are accounted for by cross-calibration with the IASI instruments on METOP and LSTs are retrieved using a Generalised Split Window algorithm from all instruments. As data towards the edge of the GEO disc is known to have greater uncertainty, any datum with a satellite zenith angle of more than 60 degrees is discarded. All LSTs included have an observation time that lies within +/- 30 minutes of the file nominal Universal Time. Data from the following instruments is included in the dataset: geostationary, Imagers on Geostationary Operational Environmental Satellite (GOES) 12 and GOES 13, Advanced Baseline Imager (ABI) on GOES 16, Spinning Enhanced Visible Infra-Red Imager (SEVIRI) on Meteosat Second Generation (MSG) 1, MSG 2, MSG 3, and MSG 4, Japanese Advanced Meteorological Imager (JAMI) on Multifunctional Transport Satellite MTSAT) 1, and MTSAT 2; and polar, Advanced Along-Track Scanning Radiometer (AATSR) on Environmental Satellite (Envisat), Moderate-resolution Imaging Spectroradiometer (MODIS) on Earth Observation System (EOS) - Aqua and EOS - Terra, Sea and Land Surface Temperature Radiometer SLSTR on Sentinel-3A and Sentinel-3B. However, it should be noted that which instruments contribute to a particular product file depends on depends on mission start and end dates and instrument downtimes. Dataset coverage starts on 1st January 2009 and ends on 31st December 2020. LSTs are provided on a global equal angle grid at a resolution of 0.05° longitude and 0.05° latitude. The dataset coverage is nominally global over the land surface but varies depending on satellite and instrument availability and coverage. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. The dataset was produced by the University of Leicester (UoL) and data were processed in the UoL processing chain. The Geostationary data were produced by the Instituto Português do Mar e da Atmosfera (IPMA) before being merged into the final dataset. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.

  • This dataset consists of daily total column water vapour (TCWV) over land, at a 0.5 degree resolution, observed by various satellite instruments. It has been produced by the European Space Agency Water Vapour Climate Change Initiative (Water_Vapour_cci), and forms part of their TCVW over land Climate Data Record -1 (TCWV-land (CDR-1). This version of the data is v3.2. This is an updated dataset, which fixes an issue with the filtering of the v3.1 data.

  • This dataset consists of monthly averaged total column water vapour (TCWV) over land, at a 0.05 degree resolution, observed by various satellite instruments. It has been produced by the European Space Agency Water Vapour Climate Change Initiative (Water_Vapour_cci), and forms part of their TCVW over land Climate Data Record -1 (TCWV-land (CDR-1). This version of the data is v3.2. This is an updated dataset, which fixes an issue with the filtering of the v3.1 data.

  • This dataset consists of monthly averaged total column water vapour (TCWV) over land, at a 0.05 degree resolution, observed by various satellite instruments. It has been produced by the European Space Agency Water Vapour Climate Change Initiative (Water_Vapour_cci), and forms part of their TCVW over land Climate Data Record -1 (TCWV-land (CDR-1). This version of the data is v3.1.

  • This dataset is a compilation of time series, together with uncertainties, of the following elements of the global mean sea level budget and ocean mass budget: (a) global mean sea level (b) the steric contribution to global mean sea level, that is, the effect of ocean water density change, which is dominated, on a global average, by thermal expansion (c) the mass contribution to global mean sea level (d) the global glaciers contribution (excluding Greenland and Antarctica) (e) the Greenland Ice Sheet and Greenland peripheral glaciers contribution (f) the Antarctic Ice Sheet contribution (g) the contribution from changes in land water storage (including snow cover). The compilation is a result from the Sea-level Budget Closure (SLBC_cci) project conducted in the framework of ESA’s Climate Change Initiative (CCI). It provides assessments of the global mean sea level and ocean mass budgets. Assessment of the global mean sea level budget means to assess how well (a) agrees, within uncertainties, to the sum of (b) and (c) or to the sum of (b), (d), (e), (f) and (g). Assessment of the ocean mass budget means to assess how well (c) agrees to the sum (d), (e), (f) and (g). All time series are expressed in terms of anomalies (in millimetres of equivalent global mean sea level) with respect to the mean value over the 10-year reference period 2006-2015. The temporal resolution is monthly. The temporal range is from January 1993 to December 2016. Some time series do not cover this full temporal range. All time series are complete over the temporal range from January 2003 to August 2016. For some elements, more than one time series are given, as a result of different assessments from different data sources and methods. Data and methods underlying the time series are as follows: (a) satellite altimetry analysis by the Sea Level CCI project. (b) a new analysis of Argo drifter data with incorporation of sea surface temperature data; an alternative time series consists in an ensemble mean over previous global mean steric sea level anomaly time series. (c) analysis of monthly global gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry mission. (d) results from a global glacier model. (e) analysis of satellite radar altimetry over the Greenland Ice Sheet, amended by results from the global glacier model for the Greenland peripheral glaciers; an alternative time series consists of results from GRACE satellite gravimetry. (f) analysis of satellite radar altimetry over the Antarctic Ice Sheet; an alternative time series consists of results from GRACE satellite gravimetry. (g) results from the WaterGAP global hydrological model.

  • This dataset consists of monthly averaged total column water vapour (TCWV) over land, at a 0.5 degree resolution, observed by various satellite instruments. It has been produced by the European Space Agency Water Vapour Climate Change Initiative (Water_Vapour_cci), and forms part of their TCVW over land Climate Data Record -1 (TCWV-land (CDR-1). This version of the data is v3.1.

  • This v2.0 SST_cci Along-Track Scanning Radiometer (ATSR) Level 3 Uncollated (L3U) Climate Data Record (CDR) consists of stable, low-bias sea surface temperature (SST) data from the Along Track Scanning Radiometer (ATSR) series of satellite instruments. It covers the period between 11/1991 and 04/2012. This Level 3 Uncollated (L3U) product provides these SST data on a 0.05 regular latitude-longitude grid with a single orbit per file. The dataset has been produced as part of the European Space Agency (ESA) Climate Change Initiative Sea Surface Temperature project(ESA SST_cci). The data products from SST_cci accurately map the surface temperature of the global oceans over the period 1981 to 2016 using observations from many satellites. The data provide independently quantified SSTs to a quality suitable for climate research. This CDR Version 2.0 product is a later version of the Long Term product v1.1. Data are made freely and openly available under a Creative Commons License by Attribution (CC By 4.0) https://creativecommons.org/licenses/by/4.0/ .

  • The ESA Sea Surface Salinity Climate Change Initiative (CCI) consortium has produced global, level 4, multi-sensor Sea Surface Salinity maps covering the 2010-2020 period. This dataset contains Sea Surface Salinity (SSS) v03.21 data at a spatial resolution of 50 km and a time resolution of 1 week. It has been spatially sampled on a 25 km EASE (Equal Area Scalable Earth) grid and 1 day of time sampling. A monthly product is also available. In addition to salinity, information on errors are provided. For more information see the user guide and other product documentation available from the linked Sea Surface Salinity CCI web page). Compared to the previous version of the data, version 3 SSS and associated uncertainties are more precise and cover a longer period (Jan 2010-sept 2020); version 3 SSS are provided closer to land than version 2 SSS, with a possible degraded quality. Users might remove these additional near land data by using the lsc_qc flag.