Keyword

Chlorophyll pigment concentrations in water bodies

419 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
From 1 - 10 / 419
  • Categories  

    The dataset comprises chlorophyll-a concentrations from water samples taken during RRS James Clark Ross cruise JR304, from 15/11/2014 - 17/12/2014. The cruise sailed from Punta Arenas, Chile, returning to Stanley, Falkland Islands. Samples were taken during transit to Signy Island (South Orkneys), and then up through the Scotia Sea to BAS survey sites P2 and P3 as well as near South Georgia and in the Western Core Box survey area to the north of the island of South Georgia. 112 samples were collected from the ship’s uncontaminated underway supply, with an intake at approximately 6 m depth, every two hours during transit periods. 103 samples were collected, using a rosette sampler, from the upper 1000m during CTD (conductivity, temperature and depth probe) deployments. Each 300ml sample was filtered through a 0.8μm pore size, 25mm diameter, MPF300 filter, rinsed with milliQ water, placed in an eppendorf tube and stored at -20°C for later analysis. Samples were extracted in 90 % acetone for 22-24 hours at 4°C and measured on a Trilogy Turner Designs 7200 lab fluorometer calibrated with a pure chlorophyll-a standard (Sigma, UK) and set up following the method of Welschmeyer (1994). Data have not been adjusted for blanks. The data set was from the annual Western Core Box Cruise run by British Antarctic Survey (BAS). Data were collected to support the PhD of Anna Belcher and provide seasonal context for the cruise in terms of the primary production in the surface ocean. Chlorophyll samples were taken by Jenny Thomas (BAS), Gabi Stowasser (BAS), Sophie Fielding(BAS), Vicky Peck (BAS), Jess Gardner (University of East Anglia and BAS), Cecilia Liszka (BAS), Manon Duret (National Oceanography Centre, NOC), Anna Belcher (NOC), Anna Mikis (Cardiff University) , Marianne Wootton (Sir Alistair Hardy Foundation for Ocean Science), Sebastien Floter (GEOMAR Kiel). Chlorophyll samples were analysed aboard the R.R.S. James Clark Ross by Manon Duret and Anna Belcher from NOC.

  • Categories  

    The dataset comprises chlorophyll-a concentrations from water samples taken during RRS James Clark Ross cruise JR291, from 12/11/2013 - 19/12/2013. The cruise sailed from Stanley, Falklands, and returned to the same port. Samples were taken during transit to Signy Island (South Orkneys), and then up through the Scotia Sea to BAS survey sites P2 and P3 as well as near South Georgia and in the Western Core Box survey area to the north of the island of South Georgia. 170 samples were collected from the ship’s uncontaminated underway supply, with an intake at approximately 6.5 m depth, every two hours during transit periods. 74 samples were collected, using a rosette sampler, from the upper 1000m during CTD (conductivity, temperature and depth probe) deployments. Each 300ml sample was filtered through a 0.8μm pore size, 25mm diameter, MPF300 filter, rinsed with Milli-Q water, placed in an Eppendorf tube and stored at -20°C for later analysis. Samples were extracted in 90 % acetone for 22-24 hours at 4°C and measured on a Trilogy Turner Designs 7200 lab fluorometer calibrated with a pure chlorophyll-a standard (Sigma, UK) and set up following the method of Welschmeyer (1994). Data have not been adjusted for blanks. The data set was from the annual Western Core Box Cruise run by British Antarctic Survey (BAS). Data were collected to support the PhD of Anna Belcher and provide seasonal context for the cruise in terms of the primary production in the surface ocean. Chlorophyll samples were collected by Elena Ceballos-Romero (University of Sevilla), Frédéric Le Moigne (NOC) and Anna Belcher (NOC). Chlorophyll samples were analysed at the National Oceanography centre in Southampton by Anna Belcher from NOC.

  • Categories  

    The data set includes Sea Rover undulating oceanographic recorder data, including temperature, salinity and chlorophyll profiles. The data were collected in the North Atlantic during the 1980s. Data collection was undertaken along numerous sections between 1981 and 1987, as follows: 1981 - 5 sections and polar front box survey; 1983 - 5 sections and polar front box survey; 1984 - 6 sections; 1985 - 3 sections; 1986 - 4 sections; 1987 - 2 sections. The sections vary in length between 500 and 1000 miles and the data includes a number of repeated traverses between the Azores and the Ocean Weather Ship at Station 'Charlie'. The data were collected by the Institut fur Meereskunde, Kiel and have been assembled by the British Oceanographic Data Centre.

  • Categories  

    This document describes CTD data collected on three cruises undertaken within the Dogger Bay Bank between August and November 2004, the RV Endeavour 12/04 (September 30 – October 10), 13/04 (August 31 – September 04) and 14/04 (October 22 – November 01). Ship-deployed CTDs were used to collect data at stations throughout each of the cruises. The cruises formed the research component of CEFAS project A1225 – North Sea Dogger Bank. This project is aimed at achieving a better understanding of the dynamics of the circulation processes of the seas around the UK, in order to characterise the extent and nature of density driven and seasonal jet-like circulation which acts as a direct and rapid pathway for transport of material. This project was conducted by the Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft Laboratory, led by Dr. Stephen Dye. The CTD data have been received by BODC as raw files from the RV Endeavour, processed and quality controlled using in-house BODC procedures and are available online to download from the BODC website.

  • Categories  

    The Iodide in the ocean project brings together marine and atmospheric scientists in order to address uncertainties in the marine iodine flux and associated ozone sink. Specifically, it aims to quantify the dominant controls on the sea surface iodide distribution and improve parameterisation of the sea-to-air iodine flux and of ozone deposition. It contains data from a combination of laboratory experiments, field measurements and ocean and atmospheric modelling from three cruises as well as worldwide sea surface measurements from 1967-2018 from published manuscripts, published and unpublished data supplied by the originators themselves or provided by repositories. Iodide, iodate and total iodine concentrations were measured on three cruises: BOBBLE, June to July 2016 in the Bay of Bengal, Sagar-Kanya33 in September 2016 in the Arabian Sea and ISOE9 in January to February 2017 in the Indian and Southern Oceans. Samples were taken from Niskin bottles on conductivity-temperature-depth (CTD) profilers. Laboratory experiments consisted of phytoplankton cultures to measure rates of iodate incorporation and iodide production. This work was carried out by Lucy Carpenter (PI), Claire Hughes (Co-PI) , Liselotte Tinel, and Helmke Hepach at York University, Mark Evans (Co-PI) at the University of Edinburgh. It was funded by the NERC Discovery Science project Iodide in the ocean: distribution and impact on iodine flux and ozone loss (parent grant reference NE/N009983/1 with child grants NE/N009444/1 and NE/N01054X/1 led by Stephen Ball and David Stevens respectively).

  • Categories  

    The data set comprises measurements of temperature, salinity, oxygen, chlorophyll and nutrients from two locations near Port Erin, Isle of Man. Sea surface temperature has been measured at Port Erin breakwater (54 05.113N, 04 46.083W) on a twice-daily basis from 1904 to the present day, accompanied by twice-daily sea surface salinity measurements since 1965. Since 1954, further measurements have been taken at the Cypris station in Port Erin Bay, 5km west of Port Erin (54 05.5N, 004 50.0W). The Cypris data have been collected at frequencies ranging from weekly to monthly depending on season, boat availability and weather, and comprise measurements of temperature at 0, 5, 10, 20 and 37m since 1954; salinity, dissolved oxygen and phosphate at 0 and 37m since 1954; silicate at 0 and 37m since 1958; nitrate and nitrite and 0 and 37 m since 1960; chlorophyll a at 0 m since 1966; ammonia at 0 and 37m since 1992; total dissolved nitrogen at 0 and 37m from 1996-2005; and total dissolved phosphorus at 0 and 37m from 1996-June 2002. At Port Erin temperatures were recorded using a Meteorological Office issue thermometer from the mid-1900s to October 2006. Since then Vemco temperature autologgers and Star-Oddi DST CTD loggers have been deployed from the Port Erin lifeboat slip and are exchanged on an approximately monthly basis. Until November 1961 temperature was recorded in degrees Fahrenheit; these data have since been converted to degrees Celsius. At the Cypris station water samples were collected with either a Nansen-Pettersen or an NIO bottle from 1954-2005. The Nansen-Pettersen bottle was used in conjunction with an insulated thermometer, while the NIO bottle was used in conjunction with a mercury reversing thermometer. From 2006 onwards an RTM 4002 X digital deep sea reversing thermometer has been used with an NIO bottle. Salinity was determined by titration against silver nitrate until 1965, thereafter using inductively coupled salinometers (Plessey 6230N until June 1998; Guildline Portasal from July 1998). Nutrients are estimated colorimetrically and dissolved oxygen is determined by the Winkler technique. Until 2006 chlorophyll-a was estimated using the trichromatic methods recommended by SCOR-UNESCO Working Group 17. Since that year the spectroscopic methods of Aminot & Rey (2000) have been used. Dissolved nitrogen and phosphorus were measured using the persulphate digestion method adapted from Valderama (1981). The Cypris station data are frequently split into the Cypris I (D. John Slinn) data set comprising data from 1954-1992 and the Cypris II data set from 1992-present. Data from the Port Erin and Cypris stations are sometimes known collectively as the ‘Port Erin Bay’ data set. Data from Port Erin Bay form part of the Isle of Man GAL Coastal Monitoring Sites network, which is described in a separate EDMED entry. The data were collected by the Port Erin Marine Laboratory (part of the University of Liverpool) until its closure in 2006. Sampling has since been taken over by the Isle of Man Government Laboratory. The data are managed by the British Oceanographic Data Centre.

  • Categories  

    Rothera Oceanographic and Biological Time Series (RaTS) in Antarctica began in 1997 and involves regular sampling of the water column undertaken by CTD (conductivity, temperature and depth) casts with associated collection of discrete water samples and the deployment of four moorings. The RaTS site is located in Marguerite Bay, approximately 4 km from shore and over a water depth of approximately 520 m. Marguerite Bay is enclosed by Adelaide Island to the north, Alexander Island to the south and the Antarctic Peninsula to the east. When optimal conditions are not available a secondary site is occupied. In times when fast ice prevents sampling at both the primary and secondary site, a third site is utilised close to the Rothera Research Station. However, only a water sample is collected during this time as the water is too shallow to allow for a cast to be conducted. An upper ocean CTD cast is made every five days in the summer and every seven days in the winter, except when weather, ice or logistic constraints intervene. A CTD unit is lowered from an inflatable boat by use of a hand-cranked winch during summer months and through a hole in the ice during the winter. As well as conductivity, temperature and depth other variables measured from the CTD cast include fluorescence and down-welling irradiance. Measurements are typically binned to 1 metre increments with a varying maximum depth typically ranging between 200 and 500 metres. Subsequent data processing involves the calculation of salinity from the conductivity channel (applying the UNESCO 1983 algorithm), calculation of chlorophyll from raw fluorescence and calibration, plus calculating depth from the pressure output. Discrete water samples are taken from a depth of 15 m using a Niskin bottle closed with a brass messenger. Water samples collected are measured for macronutrients (nitrate, nitrite, phosphate, ammonia and silicate), chlorophyll (both whole and size fractionated), dissolved oxygen isotopes, dissolved organic carbon and microbial community analysis. There are two extended periods during which no data could be collected. August to December, in both 2000 and 2001. In 2000, there was an unusually extended period of unfavourable ice conditions which were too heavy for boat operations and unsafe for sledge operations. Then in the period during 2001 a fire occurred which resulted in loss of use of the laboratory at Rothera. It was not possible to restart observations until replacement equipment arrived with the relief of the Rothera Research Station the following December. The mooring deployments took place in January 2005 (13 months), February 2006 (10 months) and December 2006 (4 months). A further mooring was deployed in the Marguerite trough in January 2005 for approximately 13 months. Mooring instrumentation included current meters, acoustic Doppler current profilers (ADCP), temperature and depth recorders, a CTD and a sediment trap. These sensors were strung out from the surface down to approximately 390 m (sediment trap). Data was collected in 15 minute intervals from the ADCP and once every hour from all the other sensors. Data processing included calibration of the pressure, conductivity and pressure channels and calculation of salinity (from conductivity channel) and depth (from pressure channel). This time series is continuously monitored by the British Antarctic Survey in an attempt to gain a suite of oceanographic data which provide an environmental background to aid interpretation of the near-shore marine ecology and to test a series of broad hypothesis concerned with pelagic-benthic coupling and environmental forcing of the near-shore oceanographic environment. The project has previously been managed by Prof. Andrew Clarke and Prof. Mike Meredith. At present (November 2021), the project and dataset is directed and managed by Mr. Hugh Venables of the British Antarctic Survey and data are available on request from the British Oceanographic Data Centre.

  • Categories  

    The Scottish Environment Protection Agency (SEPA) Marine National Environmental Monitoring Buoy Network provides real time, high frequency environmental data from strategic locations around the Scottish coast, as part of SEPA obligations to monitor the marine environment. The monitoring buoy network has been in place in some places from as early as 1996 with more buoys being deployed for ongoing measurements of the marine environment. Continuous monitoring equipment gathers dissolved oxygen, water temperature, salinity and chlorophyll-a data at regular intervals. The data is stored internally and downloaded at regular maintenance intervals. Data is collected by SEPA from monitoring buoys, mostly every 15 minutes. The data was submitted to the British Oceanographic Data Centre (BODC) for "data banking." Data has been removed as part of the SEPA quality control procedure leading to periods of absent data. This also occurs through power failure or lack of deployment. Further quality control by BODC will flag suspect data. The data is used to assess the state of the marine environment at representative locations. Salinity is used to indicate changes in water masses. Salinity decreases as freshwater inputs increase and oxygen is more soluble in freshwater than seawater. Water temperature is closely linked to seasonal changes and oxygen becomes less soluble as the water temperature increases. Chlorophyll-a is an indicator of the biomass of phytoplankton. Phytoplankton blooms are common occurrences at the start and end of the growing season in spring and autumn however excessive phytoplankton is indicated by enhanced abundance throughout the growing season (90 percentile concentration >15 µg/l measured from April to September). Excessive phytoplankton growth may cause an undesirable disturbance to the ecosystem if the decaying algae remove oxygen from the water column and sea bed as a result of microbial breakdown. Dissolved oxygen is one of the most important indicators of the health of a water body and high levels are needed to support a variety of marine life. Dissolved oxygen concentrations are affected by salinity, temperature and phytoplankton growth. Dissolved oxygen produced by photosynthesis may result in supersaturation (>100%) during the growing season. Dissolved oxygen is removed by the microbial breakdown of organic matter.

  • Categories  

    This dataset consists of near real-time ocean observations from an autonomous underwater glider, sampling at the Joint North Sea Information System (JONSIS) hydrographic section (2.23°W to 0° at 59.28°N) between 12th October and 2nd December 2013. The measurements were made by a Seaglider (serial number 502) and consist of full-depth temperature, salinity, oxygen, chlorophyll and optical backscatter observations. Dive-average current observations were also collected. This dataset contains standard raw NetCDF (.nc), engineering (.eng) and log (.log) files captured using Seaglider base station version V2.05. The glider deployment was a collaborative effort between the University of East Anglia (UEA) and Marine Scotland Science. Deployment took place from Research Ship MRV Scotia, whilst recovery utilised MPV Jura. The JONSIS repeat section crosses the path of the Fair Isle Current and the East Shetland Atlantic Inflows, key routes by which Atlantic water enters the northern North Sea.

  • Categories  

    This dataset consists of observations from two autonomous underwater gliders deployed by the University of East Anglia, UK and Sultan Qaboos University, Oman. The two Seagliders, Humpback serial number SG579 and Orca serial number SG510, collected data to investigate physical-biological interactions in the water column. The gliders were deployed in the Gulf of Oman approximately 10 km from Muscat, at the 120 m isobath. Both gliders repeatedly surveyed a 76 km section across the shelf, continental slope and open ocean between 24°15’ N, 59° E and 23°39.5’ N, 58°39’ E. Humpback, SG579 obtained 1,424 vertical profiles over a 91 day period (4 March 2015 to 3 June 2015), repeating the section 24 times. Orca, SG510 obtained 1,646 vertical profiles over a 109 day period (9 December 2015 to 27 March 2016), repeating the section 28 times. The glider data were processed using the UEA Seaglider Toolbox and standard techniques were used for calibration of the data. The data are held at BODC as a series of netCDF, .eng and .log files alongside a .mat file containing all processed data.