Keyword

Atmospheric conditions

183 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
From 1 - 10 / 183
  • Categories  

    The data set comprises time series measurements from offshore pressure gauges mounted on the sea floor. The data holdings are approximately 250 observation months from 100 sites. The data have mainly been collected in the continental shelf seas around the British Isles. Data records contain date/time, total pressure and, occasionally, temperature. The sampling interval is typically 15 minutes or hourly, over deployment periods ranging from 1 to 6 months. Data were collected mainly by the Proudman Oceanographic Laboratory (POL), now the National Oceanography Centre (NOC) at Liverpool, and are managed by the British Oceanographic Data Centre (BODC).

  • Airborne and model data collected during the ACCACIA - Aerosol-Cloud Coupling And Climate Interactions in the Arctic project. The dataset comprises airborne in situ measurements of cloud microphysical properties, the vertical structure of the boundary layer and aerosol properties, and the fluxes of solar and infra red radiation above, below, and within cloud. Data was collected on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft and the British Antarctic Survey (BAS) Masin aircraft. It also contains data from specially configured Met Office Unified Model runs. AMS and SP2 data measured on board the Research Ship James Clark Ross during ACCACIA is also available. This project is part of the NERC Arctic research programme. (NERC Reference: NE/I028858/1).

  • Categories  

    The data set comprises continuous hourly recordings of electrical potential across the Dover Strait, which relate to the flux of water, over the period 1955-1965 and part of 1968-1969, together with parallel measurements of sea temperature and pressure. Voltages on telegraph cables were measured almost continuously by pen recording milliammeters installed at Dover since 1954. The d.c. potential between the inner conductor of the cable and its screen is measured through a 2.2 kohm resistor in series with a milliammeter, whose internal resistance was of order 1 kohm. The screen was earthed at both the English and French ends, and at the French end the conductor is also effectively earthed (through inductive elements) as far as low frequency voltage variations were concerned. Thus the voltage recorded at St. Margaret's Bay is effectively the difference in earth potentials between the particular coastal points in England and France. A 0.003F capacitance in parallel with the milliammeter shunted out voltage variations with time scales less than about half a minute. For calibration, a standard voltage cell was switched in place of the cable on occasions. For parallel measurements of sea temperature (related to conductivity) and local wind conditions, 6-hourly temperatures and barometric pressures from the Noord Hinder Light Vessel, the pressures from the Terschellinger Bank Light Vessel and the 6-hourly pressures from Gorlston (East Anglia) were used. Data for sea salinity at the Varne Light Vessel were extracted from International Council for the Exploration of the Sea (ICES) publications.

  • Categories  

    The Joint North Sea Data Acquisition Project (JONSDAP) dataset comprises hydrographic and meteorological time series, including current velocities, water temperature (both at the sea surface and at depth), hydrographic pressure, air temperature, barometric pressure and wind velocities. The data were collected in the North Sea from March-June 1976. Automatically recording current meters (and usually temperature sensors), off-shore tide gauges, thermistor chains and meteorological data buoys were deployed at numerous locations around the study area for periods of a few days to several weeks. Data from 9 tide gauge, 4 meteorological data buoy, 10 thermistor chain and 81 current meter deployments are held at the British Oceanographic Data Centre (BODC). Additional hydrographic data were collected during JONSDAP 76 cruises, while over-flights with aircraft provided further measurements. However, these data are not stored at BODC. JONSDAP 76 consisted of two parts: FLEX, the Fladen Ground Experiment between 25 March and 15 June, and INOUT, the inflows of water of the whole North Sea as well as the internal movements from 15 March to 25 April. The data were collected by 13 laboratories in 8 countries.

  • Categories  

    The MASSMO 5 dataset includes the near real time transmitted EGO (Everyone’s Gliding Observatories) NetCDF versions of glider data collected by five submarine gliders across three deployment campaigns. Recovery versions of data downloaded from the all gliders with no quality assurance are also available on request. Glider sensor suites included CTD, bio-optics, and oxygen optodes. Parameters observed include, temperature, salinity, chlorophyll fluorescence, optical backscatter, and oxygen data. The MASSMO 5a mission focused on the period 23 Jun 2018 to 06 Jul 2018 and included three submarine glider deployments (UK glider deployments only are included in this dataset). All assets were deployed from NRV Alliance in partnership with NATO-CMRE, but were recovered prematurely due to vessel technical issues. The primary geographic focus of MASSMO 5 was the outer shelf and upper slope off northern Norway, in the region between Bear Island and southern Spitsbergen, but outside the 12 mile territorial limits of these islands. The MASSMO 5b mission occurred within the period 17-24 Oct 2018, a total of three ocean gliders were deployed. The primary geographic focus of MASSMO5b was the northern North Sea to the east of the Orkney archipelago. The MASSMO 5c mission was aborted and no data were collected. The MASSMO 5d mission occurred within period 26 Apr 2019 to 6 May 2019, there was deployment of a single ocean glider. The primary geographic focus of MASSMO 5d was the Faroe Shetland Channel. MASSMO 5 was co-ordinated by the National Oceanography Centre (NOC) in partnership with University of East Anglia (UEA), Plymouth Marine Laboratory (PML) and Scottish Association for Marine Science (SAMS). The mission was sponsored by Defence Science and Technology Laboratory (DSTL) and involved close co-operation with the NATO Centre for Maritime Research and Experimentation (CMRE) and UK Royal Navy, and was supported by several additional commercial, government and research partners.

  • Categories  

    This Met/Ocean data bank comprises wave, current, water temperature and surface meteorology (air temperature, humidity and wind) data collected at 11 off-shore sites on the UK continental shelf, between 1973 and 1988. Three hourly wave data (short term statistics) and hourly wind observations together with atmospheric pressure, air temperature and, occasionally, sea surface temperature were measured at weather ships (W.S.) Stevenson (61 20.0N, 000 00.0E from 1973 - 1976), Fitzroy (60 00.0N, 004 00.0W from 1973 - 1976) and Boyle (50 40.0N, 007 30.0W from 1974 - 1977). Moored current meter measurements were also made at 2 to 4 depths at each site. Three-hourly measurements of sea temperature, air temperature, barometric pressure, relative humidity, wind speed and wind direction were collected at the National Data Buoy DB/1 site (48 43.0N, 008 58.0W) between 1978 and 1982. Directional spectra of the wave field were also derived from measurements of heave, pitch and roll of the buoy, while surface currents were measured hourly. DB/1 was succeeded by DB/2 (located at 48 44.0N, 008 50.0W from 1984 - 1986 and at 58 59.0N, 007 13.0W from 1986 - 1988) and DB/3 (60 30.9N, 002 52.0W from 1984 - 1988). Met/Ocean data and directional wave spectra are available from these sites, comprising hourly recordings of wind speed and direction, maximum wind gust speed, air temperature, relative humidity, barometric pressure (and pressure trend over three hours), sea temperature, significant wave height and period, maximum wave height, swell wave height, period and direction, wind wave height and period, current speed and direction. The directional wave spectra consist of the 9 co- and quad- spectral densities for 51 frequency slots, plus derived height, period, direction and directional spread of all waves, wind waves, swell waves and spectral peak wave period. The UKOOA dataset also includes measurements from four platforms, with short term wave statistics, hourly wind observations, atmospheric pressure, air temperature and occasionally sea surface temperature data available from Forties (57 45.0N, 001 00.0E) between 1974 and 1980; Brent (61 04.0N, 001 43.0E) between 1975 and 1980; and Beryl/Frigg (59 35.0N, 001 40.0E) between 1979 and 1982. One dimensional wave spectra and meteorological data are available from Foula (60 08.0N, 002 59.0W) between 1977 and 1979. All data were collected by the UK Offshore Operators Association (UKOOA) and are stored at the British Oceanographic Data Centre (BODC).

  • Categories  

    The Marine Autonomous Systems in Support of Marine Observations (MASSMO) campaign 4 dataset includes data collected by 8 submarine gliders, 2 wavegliders and one autonomous surface vehicle. The dataset comprises recovery version data. i.e. the data downloaded from a vehicle at the end of its mission. The data obtained from gliders operated by the University of East Anglia (UEA) is fully quality controlled. No quality control procedures have been applied to the data obtained from all other autonomous vehicles. Parameters observed include, temperature, salinity, chlorophyll fluorescence, optical backscatter, oxygen, acoustic noise and video data. The dataset was collected within the UK sector of the Faroe-Shetland Channel, focussing on the outer shelf and upper shelf. The work area had a bounding box of 58-62 degrees north and 2-9 degrees west. The MASSMO 4 campaign was run between 1st June 2017 until 7th June 2017 while platforms were deployed they were collecting data continuously. The dataset was collected using a mixture of three autonomous surface vehicles and eight submarine gliders. Glider sensor suites included CTD, bio-optics, oxygen optodes, and passive acoustic sensors. Additionally the surface vehicles were equipped with meteorological sensors and cameras. The campaign comprised a range of oceanographic data collection, but had a particular focus on passive acoustic monitoring of marine mammals and oceanographic features, and included development of near-real-time data delivery to operational data users. MASSMO 4 was co-ordinated by the National Oceanography Centre (NOC) in partnership with University of East Anglia (UEA), Plymouth Marine Laboratory (PML) and Scottish Association for Marine Science (SAMS). The mission was sponsored by Defence Science and Technology Laboratory (Dstl) and involved close co-operation with the NATO Centre for Maritime Research and Experimentation (CMRE) and UK Royal Navy, and was supported by several additional commercial, government and research partners.

  • Categories  

    This collection comprises physical measurements of the water column and surface waters, together with supporting discrete chemical and biological datasets. The data were obtained from the Irish Sea and in the sea off western Scotland over 4 periods: 17 and 23 August 2011 and 06 - 07 March 2012, all collected on Seiont IV cruises and 15 - 22 June 2012 obtained using the RV Prince Madog. These datasets and their collection methods are as follows: 1) LISST particle size data - A LISST 100X type C laser diffraction instrument was lowered in a frame from the ship and the depth-averaged volumes of particles in 32 size classes in a water column from the surface to a depth of 10 m (or the bottom, where shallower) were measured. 2) CTD profiles of conductivity, temperature, sigma-theta and salinity. At each station, a CTD with attached rosette was lowered, with data measurements taken. 3) SPM, mineral SPM, chlorophyll and CDOM water sample data. At each station a surface water sample was collected either in a bucket or in a rosette sampler on the CTD and triplicate sub-samples were filtered and subsequently dried and weighed, baked (at 500°C for 3 hours to remove organic material) and weighed again. 4) CDOM discrete samples taken from CTD and underway. Surface water samples collected at each station were filtered through 0.2 μm filters and the spectral variation of the absorption coefficient of the dissolved material in the filtrate was measured in a 10 cm cell in a Shimadzu 1600 dual-beam spectrophotometer, using distilled water as a reference.. 5) Water column inherent optical property profiles. Measurements of beam attenuation were made using a Sea Tech T1000 transmissometer (20cm pathlength) fixed to the CTD on the RV Prince Madog. At some stations, vertical profiles of downwelling irradiance and upwelling radiance were made with a PRR radiometer. These cruises formed the fieldwork component of the NERC-funded project “Measurement of the abundance and optical significance of sub-micron sized particles in the ocean”. The project aimed to use different magnifications and commercially available in-situ particle sizing instruments to create a package of instruments for measuring the undisturbed particle size distributions from 0.2 μm to 1 mm. This package will first be used in a turbulence tank to 'film' the flocculation process. The insight this gives will be used to construct new theoretical models of the particle size distribution. Because the camera also measures the shape of the particles, differences between observed and calculated optical properties can be compared, for the first time, to particle shape. Finally, the complete dataset will be collated to determine what size particles, under what conditions, are primarily responsible for the signals seen in visible band satellite images of the oceans. The NERC-funded project was held under lead grant reference NE/H022090/1 with child grants NE/H020853/1 and NE/H021493/1. The lead grant was held at Bangor University, School of Ocean Sciences by Professor David Bowers and ran from 01 April 2011 to 31 March 2014. Grant NE/H020853/1 was held at the University of Plymouth, School of Marine Science and Engineering by Dr. William Alexander Nimmo Smith and ran from 01 October 2010 to 30 September 2013. Finally, grant NE/H021493/1 was held at the University of Strathclyde Physics Department by Dr. David McKee and ran from 01 April 2011 to 31 March 2014. All data have been received by BODC as raw files from the RV Prince Madog and Seiont IV, processed and quality controlled using in-house BODC procedures.

  • Categories  

    This dataset consists of observations from two autonomous underwater gliders deployed by the University of East Anglia, UK and Sultan Qaboos University, Oman. The two Seagliders, Humpback serial number SG579 and Orca serial number SG510, collected data to investigate physical-biological interactions in the water column. The gliders were deployed in the Gulf of Oman approximately 10 km from Muscat, at the 120 m isobath. Both gliders repeatedly surveyed a 76 km section across the shelf, continental slope and open ocean between 24°15’ N, 59° E and 23°39.5’ N, 58°39’ E. Humpback, SG579 obtained 1,424 vertical profiles over a 91 day period (4 March 2015 to 3 June 2015), repeating the section 24 times. Orca, SG510 obtained 1,646 vertical profiles over a 109 day period (9 December 2015 to 27 March 2016), repeating the section 28 times. The glider data were processed using the UEA Seaglider Toolbox and standard techniques were used for calibration of the data. The data are held at BODC as a series of netCDF, .eng and .log files alongside a .mat file containing all processed data.

  • Categories  

    A dataset collected by investigators of the University of East Anglia during January - February 2020 in the tropical North Atlantic. Gliders SG620 and SG637 were deployed from the RV Meteor during cruise M161 as part of the EUREC4A oberservational campaign. Glider SG579 was deployed by the autonomous surface vehicle Caravela. All gliders were recovered by the Meteor. SG620 and SG637 occupied a bowtie pattern 10 km across centered at 14'10''N 57'20''W. The two gliders were deployed with CT sails measuring conductivity and temperature and completed 131 and 155 dives respectively. SG579 was deployed at 13'21''N 58'50''W and travelled 200 km to the bowtie over 10 days conducting 75 dives. Once onsite, SG579 conducted a further 220 dives. In addition to a CT sail, SG579 carried a PAR sensor and Wetlabs sensor measuring backscatter, chlorophyll a and CDOM. Data were processed using the UEA Seaglider Toolbox.