Format

ESRI Shapefile

45 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 10 / 45
  • This dataset contains existing and potential areas of habitats associated with calcareous, coastal, upland and lowland heath landscapes. The dataset was initially created to provide a sampling framework for a field survey carried out in 1992 and 1993 by the Institute of Terrestrial Ecology (later part of the Centre for Ecology & Hydrology). It was derived from a range of geology, soils, altitude and land cover data (as described fully in the supporting information). Full details about this dataset can be found at https://doi.org/10.5285/dc583be3-3649-4df6-b67e-b0f40b4ec895

  • This dataset comprises river centrelines, digitised from OS 1:50,000 mapping. It consists of four components: rivers; canals; surface pipes (man-made channels for transporting water such as aqueducts and leats); and miscellaneous channels (including estuary and lake centre-lines and some underground channels). This dataset is a representation of the river network in Great Britain as a set of line segments, i.e. it does not comprise a geometric network.

  • Grounding line locations (GLL) data for the Evans and Rutford Glaciers in Antarctica, produced by the ESA Antarctic Ice Sheet Climate Change Initiative (CCI) project. The grounding lines have been derived from satellite observations from the ERS-1/2 and Copernicus Sentinel-1 instruments, acquired between 1995 and 2016.

  • Grounding line locations (GLL) data for the Sulzberger Glacier in Antarctica, produced by the ESA Antarctic Ice Sheet Climate Change Initiative (CCI) project. The grounding lines have been derived from satellite observations from the ERS-1/2 and Copernicus Sentinel-1 instruments, acquired in 1996/2016.

  • Grounding line locations (GLL) data for the Drygalski, Cook, Ninnis and Mertz Glaciers in Antarctica, produced by the ESA Antarctic Ice Sheet Climate Change Initiative (CCI) project. The grounding lines have been derived from satellite observations from the ERS-1/2 and Copernicus Sentinel-1 instruments, acquired betwee 1996 and 2017.

  • The dataset consists of a map of individual ash trees (Fraxinus excelsior) across Great Britain. The data is derived from Countryside Survey 2007 and includes individual trees in the landscape, clumps of trees and veteran trees. Trees were mapped in 569 1km sample squares across Britain, and this national estimate dataset was derived from the sample data using ITE Land Classes. Full details about this dataset can be found at https://doi.org/10.5285/0c3567a8-3700-4d52-a21f-de1bd709141a

  • The 5km Hex GS Collapsible Deposits dataset shows a generalised view of the GeoSure Collapsible Deposits v8 dataset to a hexagonal grid resolution of 64.95km coverage area (side length of 5km). This dataset indicates areas of potential ground movement in a helpful and user-friendly format. The rating is based on a highest level of susceptibility identified within that Hex area: Low (1), Moderate (2), Significant (3). Areas of localised significant rating are also indicated. The summarising process via spatial statistics at this scale may lead to under or over estimation of the extent of a hazard. The supporting GeoSure reports can help inform planning decisions and indicate causes of subsidence. The reports can help inform planning decisions and indicate causes of subsidence. The Collapsible Ground dataset provides an assessment of the potential for a geological deposit to collapse (to subside rapidly) as a consequence of a metastable microfabric in loessic material. Such metastable material is prone to collapse when it is loaded (as by construction of a building, for example) and then saturated by water (as by rising groundwater, for example). Collapse may cause damage to overlying property. The methodology is based on the BGS Digital Map (DiGMapGB-50) and expert knowledge of the origin and behaviour of the formations so defined. It provides complete coverage of Great Britain, subject to revision in line with changes in DiGMapGB lithology codes and methodological improvements.

  • The 5km Hex GS Shrink Swell dataset shows a generalised view of the GeoSure Shrink Swell v8 dataset to a hexagonal grid resolution of 64.95km coverage area (side length of 5km). This dataset indicates areas of potential ground movement in a helpful and user-friendly format. The rating is based on a highest level of susceptibility identified within that Hex area: Low (1), Moderate (2), Significant (3). Areas of localised significant rating are also indicated. The summarising process via spatial statistics at this scale may lead to under or over estimation of the extent of a hazard. The supporting GeoSure reports can help inform planning decisions and indicate causes of subsidence. The Shrink Swell methodology is based on the BGS Digital Map (DiGMapGB-50) and expert knowledge of the behaviour of the formations so defined. This dataset provides an assessment of the potential for a geological deposit to shrink and swell. Many soils contain clay minerals that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage). The rock formations most susceptible to shrink-swell behaviour are found mainly in the south-east of Britain. Clay rocks elsewhere in the country are older and have been hardened by burial deep in the earth and are less able to absorb water. The BGS has carried out detailed geotechnical and mineralogical investigations into rock types known to shrink, and are modelling their properties across the near surface. This research underpins guidance contained in the national GeoSure dataset, and is the basis for our responses to local authorities, companies and members of the public who require specific information on the hazard in their areas. The BGS is undertaking a wide-ranging research programme to investigate this phenomenon by identifying those areas most at risk and developing sustainable management solutions. Complete Great Britain national coverage is available.

  • Underground extraction of minerals and rocks has taken place in Great Britain for more than 5000 years. The dataset draws together a range of diverse information; the geology, the primary constraint on distribution; additional information sourced from published literature and knowledge from BGS experts. Areas of known underground mining are identified with an indication of the level of hazard associated for each site. The presence of former underground workings, particularly where shallow, may collapse, causing surface settlement or subsidence. The type of material mined, age and extent of working (where known) is used to assess and classify the hazard at each site. The value is based on an A (mining is not known to have occurred) to E (evidence of extensive underground mining is known) scale. Mining Hazard (not including coal) covers areas of known underground working in Great Britain. The coverage is not comprehensive as areas with no evidence of underground working are not included in the data. The dataset was created to provide a comprehensive overview of Great Britain's long and complicated mining legacy. It provides essential information for planners and developers working in areas where former underground mine workings may have occurred. Also for anyone involved in the ownership or management of property, including developers, householders and local government.

  • The GeoSure data sets and reports from the British Geological Survey provide information about potential ground movement or subsidence in a helpful and user-friendly format. The reports can help inform planning decisions and indicate causes of subsidence. The methodology is based on BGS DiGMap (Digital Map) and expert knowledge of the behaviour of the formations so defined. This dataset provides an assessment of the potential for a geological deposit to show running sand behaviour under the action of flowing water, a characteristic usually of saturated sand and silt grade material. Complete Great Britain national coverage is available. The storage formats of the data are ESRI and MapInfo but other formats can be supplied.