Atmospheric humidity

75 record(s)
Type of resources
Contact for the resource
Provided by
Update frequencies
From 1 - 10 / 75
  • This Met/Ocean data bank comprises wave, current, water temperature and surface meteorology (air temperature, humidity and wind) data collected at 11 off-shore sites on the UK continental shelf, between 1973 and 1988. Three hourly wave data (short term statistics) and hourly wind observations together with atmospheric pressure, air temperature and, occasionally, sea surface temperature were measured at weather ships (W.S.) Stevenson (61 20.0N, 000 00.0E from 1973 - 1976), Fitzroy (60 00.0N, 004 00.0W from 1973 - 1976) and Boyle (50 40.0N, 007 30.0W from 1974 - 1977). Moored current meter measurements were also made at 2 to 4 depths at each site. Three-hourly measurements of sea temperature, air temperature, barometric pressure, relative humidity, wind speed and wind direction were collected at the National Data Buoy DB/1 site (48 43.0N, 008 58.0W) between 1978 and 1982. Directional spectra of the wave field were also derived from measurements of heave, pitch and roll of the buoy, while surface currents were measured hourly. DB/1 was succeeded by DB/2 (located at 48 44.0N, 008 50.0W from 1984 - 1986 and at 58 59.0N, 007 13.0W from 1986 - 1988) and DB/3 (60 30.9N, 002 52.0W from 1984 - 1988). Met/Ocean data and directional wave spectra are available from these sites, comprising hourly recordings of wind speed and direction, maximum wind gust speed, air temperature, relative humidity, barometric pressure (and pressure trend over three hours), sea temperature, significant wave height and period, maximum wave height, swell wave height, period and direction, wind wave height and period, current speed and direction. The directional wave spectra consist of the 9 co- and quad- spectral densities for 51 frequency slots, plus derived height, period, direction and directional spread of all waves, wind waves, swell waves and spectral peak wave period. The UKOOA dataset also includes measurements from four platforms, with short term wave statistics, hourly wind observations, atmospheric pressure, air temperature and occasionally sea surface temperature data available from Forties (57 45.0N, 001 00.0E) between 1974 and 1980; Brent (61 04.0N, 001 43.0E) between 1975 and 1980; and Beryl/Frigg (59 35.0N, 001 40.0E) between 1979 and 1982. One dimensional wave spectra and meteorological data are available from Foula (60 08.0N, 002 59.0W) between 1977 and 1979. All data were collected by the UK Offshore Operators Association (UKOOA) and are stored at the British Oceanographic Data Centre (BODC).

  • The dataset contains a variety of atmospheric measurements including time series of air temperature, wind speed and direction, precipitation, irradiance and humidity. A comprehensive atmospheric sampling programme provided measurements of atmospheric particulates, aerosols and gases, including hydrocarbons, nitrogen, oxygen, ozone and sulphur species, carbon monoxide, carbon dioxide, and nitrous and hydrochloric acids. Additional measurements of photolysis rates and ion and radical concentrations were also collected. The data were collected from the vicinity of the north Norfolk coast between 1994 and 1997. The bulk of the data were collected during two field campaigns in the winter (October/November) of 1994 and the summer (May/June) of 1995. During these campaigns data were collected continuously from the University of East Anglia (UEA) Atmospheric Observatory at Weybourne on the north Norfolk coast. The widest range of parameters is available for this station. An instrumented vessel (MV Guardian) was stationed offshore to provide a second sampling site to allow changes in a given air mass to be monitored. The Imperial College London Jetstream Research aircraft made one flight during each campaign to provide a link between the two surface stations and four additional flights in 1996 and 1997. The River-Atmosphere-Coast Study (RACS) was the component of the LOIS programme looking at processes from the river catchment into the coastal sea. Professor John Plane from the Environmental Sciences Department at UEA was the scientific co-ordinator of this sub-project of LOIS. The data are held by BODC as a series of ASCII data files conforming to the NASA AMES 1001 format together with a PDF document that describes the data set.

  • This data set comprises a variety of meteorological parameters measured every three hours (some more recent data are at hourly intervals) at the ten North Atlantic Ocean Weather Ships for the periods listed below. OWS Alpha (1947 - 1974); OWS Bravo (1953 - 1973); OWS Charlie (1945 - 1981); OWS Delta (1945 - 1973); OWS India (1947 - 1975); OWS Juliet (1947 - 1975); OWS Kilo (1954 - 1975); OWS Lima (1975 - 1983); OWS Mike (1949 - 1982); OWS Romeo (1975 - 1980). Each OWS record contains data from Norway, the Netherlands, France, Sweden, Russia, the UK and the USA as appropriate. Six of the weatherships ceased operation in the mid-1970s. However data are still being collected by OWS Mike, Romeo, Charlie and Lima. More recent data from these ships may be obtained from the UK Meteorological Office.

  • This dataset consists of underway meteorology, navigation and sea surface hydrography measurements from cruise JC044 and JC082 as well as 7 CTD casts for cruise JC082. Data were collected on two RRS James Cook cruises, JC044 and JC082, covering the Cayman Trough and Mid-Cayman Spreading Centre in the Caribbean Sea. Cruise JC044 took place between March 25th and April 22nd 2010 and cruise JC082 took place between February 6th and March 8th 2013. Navigation data were collected using an Applanix POSMV system and meteorology and sea surface hydrography were collected using the NMF Surfmet system. Both systems were run through the duration of the cruise, excepting times for cleaning, entering and leaving port, and while alongside. CTD data were obtained from a Seabird SBE CTD system fitted to a rosette and launched at stations along the cruise track. Data were collected as part of the NERC-funded project “Hydrothermal activity and deep-ocean biology of the Mid-Cayman Rise” which aimed to investigate the world's deepest under-sea volcanic ridge, the Mid-Cayman Rise, to advance understanding of patterns of biodiversity in the planet's largest ecosystem. By studying the geology and hydrography of the world's deepest seafloor spreading centre using established techniques, the project aimed to confirm the geological processes driving the vents and to reveal the evolutionary genetic relationships of their inhabitants to those in vents elsewhere. The project was funded by two NERC standard grants. The lead grant, NE/F017774/1, ran from 15 September 2009 to 01 March 2014, and was led by principal investigator Dr Jonathan TP Copley of University of Southampton, School of Ocean and Earth Sciences. The child grant, NE/F017758/1, ran from 19 July 2009 to 31 December 2013, and was led by Dr BJ Morton of National Oceanography Centre, Science and Technology. Underway navigation, meteorology and sea surface hydrography and CTD datasets have been received as raw files by BODC and are available upon request.

  • This dataset consists of a hydrographic, biogeochemical and meteorological data. Hydrographic profiles, underway measurements and point sources provided information on the water column structure including temperature, salinity and fluorescence. The biogeochemical water sampling programme provided details on nutrients. Meteorological parameters were measured across the study area. Data collection was undertaken in the Arctic Sea. The data were collected during the period 15 - 31 March 2013 during RV Lance ACCACIA cruise and from 13 July - 16 August 2013 during RRS James Clark Ross JR20130713 (JR288) cruise. Measurements were taken using a variety of instrumentation, including conductivity-temperature-depth (CTD) profilers with attached auxiliary sensors, water bottle samplers, fluorometers, grabs and ship flow-through and meteorological packages. The data have been collected as part of the United Kingdom (UK) Natural Environment Research Council (NERC) Arctic Research Programme (ACCACIA project) to provide information on how aerosol concentration levels change with the seasons and the extent of sea-ice cover. This will help improve modelling of the global climate system and predictions for future climatic change, as well as immediate weather forecasts for mid-to-high latitude locations. Both cruises were undertaken by the University of York- Department Of Chemistry in collaboration with the University of Manchester, University of Leeds, University of Oxford, Plymouth Marine Laboratory, University of Essex, Bangor University and British Antarctic Survey. The Principal Scientist during the first research cruise was James Lee (University of York) and on the second cruise Lucy Carpenter and Rosie Chance, also from the University of York. The Principal Investigator for this project is Ian Brooks (University of Leeds). CTD data, temperature logger data, nutrient data, ship underway monitoring system data and trace gases concentrations in the water and air are held at the British Oceanographic Data Centre. Other data have not yet been supplied or have been supplied to the British Atmospheric Data Centre.

  • This dataset comprises hydrographic and meteorological data transmitted in near real time from unmanned surface vehicles (USVs). Also included are hydrographic profiles through the water column obtained from submarine Slocum gliders, upon recovery. Data from these platforms have been converted into the international 'Everyone's Gliding Observatories (EGO)' exchange format. The dataset is supported by barotrophic tidal current imagery. Hydrographic data were obtained from two geographical regions. Firstly, from a transect extending from the Isles of Scilly out to the moored Carbon And Nutrient Dynamics and Fluxes Over Shelf Systems ('Candyfloss') Array in the Celtic Sea. Subsequently, a more localised survey was carried out in the English Channel, south of Plymouth. The tidal image data span the period 1st October to 21st November 2014 (15 minute intervals). Autonomous platforms were deployed between 1st and 26th October 2014 (Phase One, Celtic Sea), subsequently between 4th and 7th November 2014 (Phase Two, English Channel). Data were collected as part of Marine Autonomous Systems in Support of Marine Observations ('MASSMO'), contributing to the Exploring Ocean Fronts project. Tidal images are a product of Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) simulation runs. MASSMO was carried out as a trial of new autonomous technologies and to collect scientific data, including observation of marine life. The dataset acquired provides valuable oceanographic and meteorological measurements including a traverse of an ocean front. MASSMO was a collaborative effort involving various UK laboratories and commercial organisations, coordinated by the National Oceanography Centre (NOC). This data archive consists of measurements made by wavegliders operated by NOC and the Centre for Environment, Fisheries and Aquaculture Science (Cefas), the MOST Autonaut and Slocum glider units 398 and 400, operated by NOC.

  • The Joint Air-Sea Interaction (JASIN) 78 Project Data Set comprises a variety of measurements including upper air and near surface meteorology, and physical oceanography. Meteorological data include air temperature, pressure, humidity and wind, while oceanographic data include temperature, salinity, currents, wave spectra and short-term wave statistics. The data were collected in the North Rockall Trough, an area of deep water (1000m - 2000m) several hundred kilometres off the west coast of Scotland. The experiment lasted for 2 months from mid-July to mid-September 1978 and comprised 2 intensive observational phases preceded by a preparatory test period. Data were collected using a variety of instrumentation, with meteorological data being provided by radiosondes, tethered balloons, and ship- and aircraft-mounted sensors. Hydrographic data were collected via shipboard deployment of conductivity-temperature-depth (CTD) sensor packages (both standard and yoyo profiles), towed thermistor chains, ship-mounted wave recorders and moored temperature and current meters. The JASIN Project was designed to study the interaction of the atmospheric and oceanic boundary layers with the large scale motions of the sea and air. The multiplicity of processes sampled necessitated a large experiment and involved more than 50 teams of investigators from nine countries. The data are held at the British Oceanographic Data Centre and many series are available via BODC's online data delivery portal.

  • This dataset contains a variety of oceanographic and atmospheric measurements including time series of temperature, salinity, current speed and direction and discrete samples of salinity, dissolved oxygen, oxygen isotope and trace gas concentrations of the water column. It also includes atmospheric measurements including temperature, humidity and wind speed and direction. The data were collected in the Amundsen Sea region of the Antarctic between 2012 and 2017. The majority of the data were collected during RRS James Clark Ross cruise JR20140126 from January to March 2014. Moorings were deployed in 2012 and redeployed in 2014, most collected data until 2016. Measurements were taken using a variety of instrumentation, including conductivity-temperature-depth (CTD) profilers with attached auxiliary sensors, acoustic Doppler current profilers (ADCPs), Radiosondes and Microstructure profilers (MVP). Discrete water samples were also taken and analysed for salinity, dissolved oxygen and oxygen isotope concentration and trace gas concentrations. Measurements were also taken by CTD profilers, current meters and ADCPs deployed on moorings and by CTDs deployed on tags on seals. The project was designed to discover how and why warm ocean water gets close to the ice shelf in Antarctica (and in particular the Amundsen Sea) and is part of the wider iSTAR programme. The principal investigator for this project is Professor Karen Heywood, University of East Anglia and the project was funded by the Natural Environment Research Council. Data from the project are held at the British Oceanographic Data Centre. BODC do not expect to receive data from the Moving Vessel Profiler (MVP) deployed by the project. The originator has identified data quality issues with these datasets and has indicated that they won't be supplied. We expect to receive all other data collected by the project. The Korean Polar Research Institute (KOPRI) collected CTD and Lowered Acoustic Doppler Current Profiles (LADCP) data in 2012 (cruise ANA02C- report accessible via and 2016 (cruise ANA06B- report not yet available).

  • The Porcupine Abyssal Plain (PAP) Observatory is a sustained, multidisciplinary observatory. Key time-series datasets include measurements of sea temperature, air temperature, air pressure, waves, wind, CO2, salinity, Megafauna (Species diversity, abundance and biomass), geochemistry, humidity, chlorophyll, nitrate, PAR and currents. The PAP observatory is situated in the Northeast Atlantic away from the continental slope and mid Atlantic ridge (49N,16.5W, depth 4800m). Since 1989, this environmental study site in the Northeast Atlantic has become a major focus for international and interdisciplinary scientific research and monitoring including water column biogeochemistry, physics and benthic biology. Since 2002, a mooring has been in place with sensors taking a diverse set of biogeochemical and physical measurements of the upper 1000m of the water column. Some of these data are transmitted in near real-time via satellite. A diverse range of Essential Climate variables are measured and sampled at the PAP site from the atmosphere and surface ocean to the seafloor. The instruments used include CTD + Backscatter; ADCP (2 way, re-programmable for water profiling as well as burst sampling), Seismometer (2 way, retrieval of selected time period - 1 Minute - in the past e.g. seismic event), Bottom Pressure Sensor, Sediment trap (2 way, re-programmable for change sampling interval), Boxcores, Mega- and Multicores, Optode, Digital Camera and Stand-alone hydrophone. Seafloor sampling includes trawling, coring, towed camera systems from a research ship and time-lapse photography. Since 2002 many of the upper ocean measurements (0-1000m) have been transmitted in near real-time. There is a growing need for ever more accurate climatic models to predict future climate change and the impact this will have on human settlement, the insurance industry, fisheries, agriculture and nature at large. Long term observations at fixed points in the open oceans are essential to provide high quality and high resolution data to increase our knowledge of how our oceans function, how they are changing and how this may impact on the climate. The observatory is coordinated by the National Oceanography Centre. In 2010, a collaboration between NERC and UK Met Office has led to the first atmospheric measurements at the site.

  • This dataset consists of measurements of underway meteorology, navigation and sea surface hydrography as well as underway discrete salinity samples. A comprehensive survey of the Tropical Atlantic was undertaken between June and August 2017. Data were collected on RRS James Cook cruise JC150. Navigation data were collected using an Applanix POSMV system and meteorology and sea surface hydrography were collected using the NMF Surfmet system. Both systems were run through the duration of the cruise, excepting times for cleaning, entering and leaving port, and while alongside. 65 salinity samples were taken from the non-toxic underway supply. The non-toxic, pumped seawater supply intake was located 5.5 m below the sea surface. Sample analysis was completed using a Guildline ‘Autosal’ salinometer. This cruise formed the field component of NERC Discovery Science project "Zinc, Iron and Phosphorus co-Limitation in the Ocean (ZIPLOc)". The data were collected in order to determine the prevalence of zinc and iron limitation of APA in the phosphate deplete subtropical North Atlantic Ocean; to quantify the impact of zinc-phosphorous and iron phosphorous co-limitation on biological activity, specifically phytoplankton growth, primary production and nitrogen fixation; and to quantify the significance of zonc-phosphorous and iron-phosphorous co-limitation in driving phytoplankton productivity over basin scales and multi-decadal time scales. The Discovery Science project was composed of Standard Grant reference NE/N001079/1 as the lead grant with child grant NE/N001125/1. The lead grant runs from 02 January 2017 to 03 February 2017 and the child grant runs from 01 February 2017 to 31 July 2019. Dr Claire Mahaffey of University of Liverpool, Earth, Ocean and Ecological Sciences was the principal investigator of the lead grant of this project. Prof Maeve C. Lohan of University of Southampton, School of Ocean and Earth Science was the principal investigator of the child grant. The underway discrete salinity samples data and the underway navigation, meteorology and sea surface hydrography data have been received by BODC as raw files from the RRS James Cook, processed and quality controlled using in-house BODC procedures and are will be made available online in the near future.