Keyword

unknown

268 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
From 1 - 10 / 268
  • Categories  

    The data set comprises 2193 profiles of turbidity from an area of the Severn Estuary (UK) between the Shoots and Bridgwater Bay between 1974 and 1978. The data were collected as analogue records of continuous vertical profiles on a time series cross-section basis, where possible, over 13.5 hours from a drifting ship. All measurements were collected between 0 m and 39 m depth. The data coverage is derived from 172 stations along 17 survey lines, the density of coverage varying between 1 and 99 records per station. Each analogue record was digitised as approximately 200 pairs of XY coordinates. The X ordinates were then converted to depth (in metres) using a depth calibration and the Y ordinates to parts per million (PPM) of sediment using siltmeter calibration data. The Fluid Mud data bank was designed by the (former) Institute of Oceanographic Sciences (IOS) Taunton, UK, and the data were originally stored at IOS on a PDP 11 computer. They were then moved to an Oracle RDBMS at the British Oceanographic Data Centre (BODC) and stored as the Bristol Channel Suspended Sediments Data Bank.

  • Categories  

    The dataset contains 39148 years of sea level data from 1355 station records, with some stations having alternative versions of the records provided from different sources. GESLA-2 data may be obtained from www.gesla.org. The site also contains the file format description and other information. The text files contain headers with lines of metadata followed by the data itself in a simple column format. All the tide gauge data in GESLA-2 have hourly or more frequent sampling. The basic data from the US National Atmospheric and Oceanic Administration (NOAA) are 6-minute values but for GESLA-2 purposes we instead settled on their readily-available 'verified hourly values'. Most UK records are also hourly values up to the 1990s, and 15-minute values thereafter. Records from some other sources may have different sampling, and records should be inspected individually if sampling considerations are considered critical to an analysis. The GESLA-2 dataset has global coverage and better geographical coverage that the GESLA-1 with stations in new regions (defined by stations in the new dataset located more than 50 km from any station in GESLA-1). For example, major improvements can be seen to have been made for the Mediterranean and Baltic Seas, Japan, New Zealand and the African coastline south of the Equator. The earliest measurements are from Brest, France (04/01/1846) and the latest from Cuxhaven, Germany and Esbjerg, Denmark (01/05/2015). There are 29 years in an average record, although the actual number of years varies from only 1 at short-lived sites, to 167 in the case of Brest, France. Most of the measurements in GESLA-2 were made during the second half of the twentieth century. The most globally-representative analyses of sea level variability with GESLA-2 will be those that focus on the period since about 1970. Historically, delayed-mode data comprised spot values of sea level every hour, obtained from inspection of the ink trace on a tide gauge chart. Nowadays tide gauge data loggers provide data electronically. Data can be either spot values, integrated (averaged) values over specified periods (e.g. 6 minutes), or integrated over a specified period within a longer sampling period (e.g. averaged over 3 minutes every 6 minutes). The construction of this dataset is fundamental to research in sea level variability and also to practical aspects of coastal engineering. One component is concerned with encouraging countries to install tide gauges at locations where none exist, to operate them to internationally agreed standards, and to make the data available to interested users. A second component is concerned with the collection of data from the global set of tide gauges, whether gauges have originated through the GLOSS programme or not, and to make the data available. The records in GESLA-2 will have had some form of quality control undertaken by the data providers. However, the extent to which that control will have been undertaken will inevitably vary between providers and with time. In most cases, no further quality control has been made beyond that already undertaken by the data providers. Although there are many individual contributions, over a quarter of the station-years are provided by the research quality dataset of UHSLC. Contributors include: British Oceanographic Data Centre; University of Hawaii Sea Level Center; Japan Meteorological Agency; US National Oceanic and Atmospheric Administration; Puertos del Estado, Spain; Marine Environmental Data Service, Canada; Instituto Espanol de Oceanografica, Spain; idromare, Italy; Swedish Meteorological and Hydrological Institute; Federal Maritime and Hydrographic Agency, Germany; Finnish Meteorological Institute; Service hydrographique et oc?anographique de la Marine, France; Rijkswaterstaat, Netherlands; Danish Meteorological Institute; Norwegian Hydrographic Service; Icelandic Coastguard Service; Istituto Talassographico di Trieste; Venice Commune, Italy;

  • Categories  

    The data set comprises temperature and salinity hydrocasts collected across the North Atlantic Ocean between 1910 and 1990. The measurements were collected by nine North Atlantic Ocean Weather Ships (OWS): OWS Alpha (1954 – 1974); OWS Bravo (1928 – 1974); OWS Charlie (1910 – 1982); OWS Echo (1910 – 1979); OWS India (1957 – 1975); OWS Juliet (1950 – 1975); OWS Kilo (1949 – 1973); OWS Lima (1948 – 1990); OWS Mike (1948 – 1982). This data set also includes measurements collected close to the general positions prior to the stationing of the Weather ships for the OWS Bravo, Charlie and Echo stations. Data from OWS Alpha, Bravo, Echo, India, Juliett and Kilo have been taken from the US National Oceanographic Data Center (NODC) compilations whereas those from OWS Charlie, Lima and Mike have been constructed from both the US NODC and International Council for the Exploration of the Seas (ICES) data holdings. In addition a daily averaged data set for OWS Charlie is available for the period 1975 - 1985 (supplied by Syd Levitus). This data set was supplied to the British Oceanographic Data Centre (BODC) by ICES. Additional files and more recent data can be acquired from the ICES website.

  • Categories  

    Historic sea level data from 6 sites on the South coast of England, recovered as part of a PhD on sea level trends in the English Channel. Devonport: 1961-1986, 1988-1990 Newhaven: 1942-1948, 1950-1951, 1953-1957, 1964-1965, 1973, 1988 Portsmouth: 1961-1990 Southampton: 1935-1979, 1982-1990 St. Marys: 1968-1969, 1973, 1975, 1977-1978, 1987-1989 Weymouth: 1967-1971, 1983-1987 There are raw data files and cleaned data files. The cleaned files have been corrected for datum changes which are recorded in the readme files for each site.

  • Categories  

    The GEBCO_2019 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. The grid uses as a ‘base’ Version 1 of the SRTM15_plus data set (Sandwell et al). This data set is a fusion of land topography with measured and estimated seafloor topography. It is largely based on version 11 of SRTM30_plus (5). Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project, and from a number of international and national data repositories and regional mapping initiatives. The GEBCO_2019 Grid represents all data within the 2019 compilation. The compilation of the GEBCO_2019 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. The majority of the compilation was done using the 'remove-restore' procedure (Smith and Sandwell, 1997; Becker, Sandwell and Smith, 2009 and Hell and Jakobsson, 2011). This is a two stage process of computing the difference between the new data and the ‘base’ grid and then gridding the difference and adding the difference back to the existing ‘base’ grid. The aim is to achieve a smooth transition between the 'new' and 'base' data sets with the minimum of perturbation of the existing base data set. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The GEBCO_2019 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA).

  • Categories  

    A collection of raw water temperature-depth-time profiles were recorded from a selection of dive computers, underwater cameras and baseline Castaway microCTD devices. Data were collected at Oban recompression chamber (owned and managed by Tritonia Scientific), as well as during sea dives local to 56.42 N, 5.47W, over a two-week period between 08/01/2020 and 07/02/2020. A number of different devices and models were tested during the study. Chamber dives were undertaken to test and compare device response time (29 devices over 11 dives) and accuracy (6 replicate dives). This was followed by local sea dives to further compare device accuracy. During each pair of sea dives (6 total), half of the devices were mounted on a frame with the remainder worn by two divers. For the subsequent dives in each pair, each device was switched to the alternate mounting position. Dive profiles were exported from individual dive computers into Subsurface open source software, then exported in ssrf (XML) format for each week of data collection. Profiles from all dive computers were combined for analysis. Castaway microCTDs and Paralenz Dive Camera+ profiles were exported as individual CSV files per dive. Data were collected as part of Celia Marlowe’s PhD project at the University of East Anglia, which aimed to assess the precision, accuracy and uncertainty in water temperature profiles collected from devices commonly carried by Scuba divers. The PhD project is part of the Next Generation Unmanned Systems Science (NEXUSS) Centre for Doctoral Training, funded by the Natural Environment Research Council (NERC) and the Engineering and Physical Science Research Council (EPSRC) (NE/N012070/1), and is additionally supported by Cefas Seedcorn (DP901D). The diving and chamber tests were supported through a NERC National Facility for Scientific Diving grant (NFSD/17/02).

  • Categories  

    The GEBCO_2021 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. In regions outside of the Arctic Ocean area, the grid uses as a base, Version 2.2 of the SRTM15+ data set between latitudes of 50 degrees South and 60 degrees North. This data set is a fusion of land topography with measured and estimated seafloor topography. This version of SRTM15+ is similar to version 2.1 [Tozer et al., 2020] with minor updates. Version 2.2 uses predicted depths based on the V29 gravity model [Sandwell et al., 2019] and approximately 400 small areas containing suspect data were visually identified and removed from the grid. Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project. The GEBCO_2021 Grid represents all data within the 2021 compilation. The compilation of the GEBCO_2021 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. Outside of Polar regions, the gridded bathymetric data sets are supplied by the Regional Centers as sparse grids, i.e. only grid cells that contain data were populated, were included on to the base grid without any blending. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The primary GEBCO_2021 grid contains land and ice surface elevation information - as provided for previous GEBCO grid releases. In addition, for the 2021 release a version with under-ice topography/bathymetry information for Greenland and Antarctica is also available. The GEBCO_2021 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA.

  • Categories  

    The data set comprises time series of wave height and period data from in-situ wave recorders at fixed locations. Principal parameters are significant/characteristic wave height and mean zero crossing period - usually derived from the analysis of 20 or 30 minute recordings taken at intervals of the order of 3 hours. Data holdings include over 1500 recording months of data from some 60 sites across the continental shelf areas around the British Isles and the NE Atlantic between 1954 and 1995. Recording periods vary from 2 months at some sites to over 15 years. The longer series are noted here: Channel Lightvessel (49 54.4N, 002 53.7W; 01 Sep 1979 - 31 Dec 1985); Dowsing Lightvessel (53 34.0N, 000 50.2W; 01 May 1970 - 30 Apr 1971; 01 Nov 1975 - 30 Jun 1981; 01 Jan 1982 - 31 Dec 1982; 01 Jan 1984 - 31 Dec 1984); Ocean Weather Ship Lima (57 00.0N, 020 00.0W; 01 Jan 1975 - 31 Dec 1983); Saint Gowan Lightvessel (51 30.0N, 004 59.8W; 01 Aug 1975 - 31 Jul 1976; 01 Dec 1976 - 31 Dec 1983); Seven Stones Lightvessel (50 03.8N, 006 04.4W; 31 Jan 1962 - 31 Jan 1963; 01 Jan 1968 - 31 Dec 1969; 01 Jul 1971 - 30 Jun 1974; 01 Apr 1975 - 31 Dec 1985). The data originate primarily from UK and Irish laboratories and are managed by the British Oceanographic Data Centre. Data collection is ongoing at some sites (for example, Seven Stones Lighvessel) but these data are not managed by BODC. They are part of the Centre for Environment, Fisheries and Aquaculture Science (CEFAS) wavenet network.

  • Categories  

    The data set comprises time series measurements from offshore pressure gauges mounted on the sea floor. The data holdings are approximately 100 observation months from 30 sites. The data are mainly from trans-ocean sections in the North Atlantic. Data records contain date/time, total pressure (or relative pressure) and, occasionally, temperature. The sampling interval is typically 15 minutes or hourly, over deployment periods ranging from 1 to 6 months. Data were collected mainly by the Proudman Oceanographic Laboratory (POL), now the National Oceanography Centre (NOC) at Liverpool, and are managed by the British Oceanographic Data Centre (BODC).

  • Categories  

    This dataset consists of silicon isotope data from deep-sea sediment cores taken off southeast Iceland. Samples of sea sponges were collected using piston cores and sediment cores aboard the RV Celtic Explorer in 2008 and dried or frozen for transportation. Organic matter was removed and samples were preserved for later analysis. Sample analysis occurred in 2012 as part of a comprehensive study of the carbon cycle. The data collected form the field component of the NERC-funded project "Unravelling the carbon cycle using silicon isotopes in the oceans". The project aimed to investigate deep sea sponges and the silicon they produce, in an effort to piece together the links between the supply of vital nutrients in different parts of the ocean and the crucial role other marine organisms play in absorbing CO2 from the atmosphere and storing it in deep sea sediments as organic carbon. The Discovery Science project was composed of New Investigators (FEC) Grant reference NE/J00474X/1 led by Dr. Katherine Rosemary Hendry of Cardiff University, School of Earth and Ocean Sciences. The project ran from 26 January 2012 to 30 September 2013. The silicon isotope data have been received by BODC as raw files, and will be processed and quality controlled using in-house BODC procedures and made available online in the near future. The raw files are available on request.