Keyword

wind speed

37 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 37
  • This dataset contains composite lidar wind profile data from the NCAS AMF Halo Doppler lidar mounted on a motion stabilised platform on board the Swedish Icebreaker Oden durning Arctic Cloud Summer Expedition (ACSE). ACSE took place in the Arctic during summer 2014. These measurements were used to complement a suite of other observations taken during the cruise. Those of the UK contribution, as well as selected other data, are available within the associated data collection in the Centre for Environmental Data Analysis (CEDA) archives. Other cruise data may be available in the NOAA ACSE and The Bolin Centre for Climate Research SWERUS (SWEdish-Russian-US) holdings - see online resources linked to this record. The Arctic Cloud Summer Expedition (ACSE) was a collaboration between the University of Leeds, the University of Stockholm, and NOAA-CIRES. ACSE aimed to study the response of Arctic boundary layer cloud to changes in surface conditions in the Arctic Ocean as a working package of the larger Swedish-Russian-US Investigation of Climate, Cryosphere and Carbon interaction (SWERUS-C3) Expedition in Summer 2014. This expedition was a core component to the overall SWERUS-C3 programme and was supported by the Swedish Polar Research Secretariat. ACSE took place during a 3-month cruise of the Swedish Icebreaker Oden from Tromso, Norway to Barrow, Alaska and back over the summer of 2014. During this cruise ACSE scientists measured surface turbulent exchange, boundary layer structure, and cloud properties. Many of the measurements used remote sensing approaches - radar, lidar, and microwave radiometers - to retrieve vertical profiles of the dynamic and microphysical properties of the lower atmosphere and cloud. The UK participation of ACSE was funded by the Natural Environment Research Council (NERC, grant: NE/K011820/1) and involved instrumentation from the Atmospheric Measurement Facility of the UK's National Centre for Atmospheric Science (NCAS AMF). This dataset collection contains data mainy from the UK contribution with some additional data from other institutes also archived to complement the suite of meteorological measurements.

  • This dataset contains provides the final best estimates of fluxes, mean environmental variables and derived transfer coefficient estimates, along with asociated quality control flags, during the Icebreaker Oden voyage durning the Arctic Cloud Summer Expedition (ACSE) in summer 2014. These were calculated based on instrumentation data from the University of Leeds' Metek sonic anemometer, Licor LI-7500 gas analyzer and XSENS MTi-G-700 motion pack, plus mean surface meteorology data provided from the automatic weather station operated on board by the Department of Meteorology, Stockholm University (MISU). Other data from the UK contribution, as well as selected other data, are available within the associated data collection in the Centre for Environmental Data Analysis (CEDA) archives. Other cruise data may be available in the NOAA ACSE and The Bolin Centre for Climate Research SWERUS (SWEdish-Russian-US) holdings - see online resources linked to this record. The Arctic Cloud Summer Expedition (ACSE) was a collaboration between the University of Leeds, the University of Stockholm, and NOAA-CIRES. ACSE aimed to study the response of Arctic boundary layer cloud to changes in surface conditions in the Arctic Ocean as a working package of the larger Swedish-Russian-US Investigation of Climate, Cryosphere and Carbon interaction (SWERUS-C3) Expedition in Summer 2014. This expedition was a core component to the overall SWERUS-C3 programme and was supported by the Swedish Polar Research Secretariat. ACSE took place during a 3-month cruise of the Swedish Icebreaker Oden from Tromso, Norway to Barrow, Alaska and back over the summer of 2014. During this cruise ACSE scientists measured surface turbulent exchange, boundary layer structure, and cloud properties. Many of the measurements used remote sensing approaches - radar, lidar, and microwave radiometers - to retrieve vertical profiles of the dynamic and microphysical properties of the lower atmosphere and cloud. The UK participation of ACSE was funded by the Natural Environment Research Council (NERC, grant: NE/K011820/1) and involved instrumentation from the Atmospheric Measurement Facility of the UK's National Centre for Atmospheric Science (NCAS AMF). This dataset collection contains data mainy from the UK contribution with some additional data from other institutes also archived to complement the suite of meteorological measurements. The document "ACSE_turbulent_fluxes_readme.txt" in the archive contains fuller details of the flux calculations. The final data, prepared for archiving as NetCDF data at the Centre for Environmental Data Analysis (CEDA) by Ian Brooks, University of Leeds, contain: 1) The final quality controlled best estimates of 20-min averaged dynamic fluxes, associated mean environmental variables (10m wind, etc), transfer coefficients, and quality control flags. 2) The raw kinematic fluxes, etc that go into generating (1), along with the quality control variables used in generating the QC flags, and the QC flags. 3) Other environmental variables (in some cases with duplicates from multiple different sensors) averaged onto the same time base as the flux estimates. The authors note that in all cases a lot of work has been done on quality control and applying suitable corrections to raw measurements. In many cases other choices could have been made, and additional QC measures may need to be applied. Most of the work on the flux data processing has been done by John Prytherch, with additional input from Ian Brooks and Dominic Salisbury. Additional work on ancillary data was undertaken by other members of the ACSE science team.

  • This dataset contains derived cloud layer measurements of Icebreaker Oden utilising data from the National Centre for Atmospheric Science's Atmospheric Measurement Facility's (NCAS AMF) Halo Doppler lidar and NOAA cloud radar on board Icebreaker Oden durning Arctic Cloud Summer Expedition (ACSE). ACSE took place in the Arctic during summer 2014. These measurements were used to complement a suite of other observations taken during the cruise. Those of the UK contribution, as well as selected other data, are available within the associated data collection in the Centre for Environmental Data Analysis (CEDA) archives. Other cruise data may be available in the NOAA ACSE and The Bolin Centre for Climate Research SWERUS (SWEdish-Russian-US) holdings - see online resources linked to this record. The data provide altitudes of cloud base and top for the first two cloud layers. Cloud base was established from the laser ceilometer (base of liquid cloud) whist he cloud top was established from the cloud radar data. Where fog was detected, the fog top altitude from the radar data is given. Note: it was possible for the radar to detect a cloud top where the laser ceilometer was not able to detecte a cloud base. These data were prepared for archiving as NetCDF data at the Centre for Environmental Data Analysis (CEDA) by Ian Brooks, University of Leeds. The Arctic Cloud Summer Expedition (ACSE) was a collaboration between the University of Leeds, the University of Stockholm, and NOAA-CIRES. ACSE aimed to study the response of Arctic boundary layer cloud to changes in surface conditions in the Arctic Ocean as a working package of the larger Swedish-Russian-US Investigation of Climate, Cryosphere and Carbon interaction (SWERUS-C3) Expedition in Summer 2014. This expedition was a core component to the overall SWERUS-C3 programme and was supported by the Swedish Polar Research Secretariat. ACSE took place during a 3-month cruise of the Swedish Icebreaker Oden from Tromso, Norway to Barrow, Alaska and back over the summer of 2014. During this cruise ACSE scientists measured surface turbulent exchange, boundary layer structure, and cloud properties. Many of the measurements used remote sensing approaches - radar, lidar, and microwave radiometers - to retrieve vertical profiles of the dynamic and microphysical properties of the lower atmosphere and cloud. The UK participation of ACSE was funded by the Natural Environment Research Council (NERC, grant: NE/K011820/1) and involved instrumentation from the Atmospheric Measurement Facility of the UK's National Centre for Atmospheric Science (NCAS AMF). This dataset collection contains data mainy from the UK contribution with some additional data from other institutes also archived to complement the suite of meteorological measurements.

  • The Radio Acoustic Sounding System (RASS) messages data describe hourly observations from around 120 stations distributed globally. The observations, which are later transmitted in reports, give measurements of parameters such as wind speed, and temperature. The data are collected by observation stations worldwide and transmitted within the RASS message.

  • Data from the instruments at the Natural Environment Research Council (NERC) Mesosphere-Stratosphere-Troposphere (MST) Radar Facility near Aberystwyth in West Wales. The principal measurements made by the MST radar are of the three dimensional wind vector over the altitude range 2 - 20 km. Surface meteorological measurements from the radar site, ceilometer data, sky camera images and wind speed and direction recorded from a 10m tower located 6km away are also available. Other instruments at the facility have included one of the Met Office's boundary layer wind profilers and NCAS's boundary layer wind profiler.

  • This dataset contains upper air sounding profiles of temperature, pressure, humidity, wind speed and wind direction measurements from the NCAS Vaisala Sounding Station unit 2 radiosonde lauches. The radiosondes were launched over Greenland and Iceland from the Alliance research ship for the Iceland Greenland seas Project (IGP). The Iceland Greenland seas Project (IGP) was an international project involving the UK, US a Norwegian research communities. The UK component was funded by NERC, under the Atmospheric Forcing of the Iceland Sea (AFIS) project (NE/N009754/1)

  • ACCACIA was part of the NERC Arctic research programme. (NERC Reference: NE/I028858/1). ACCACIA aimed to improve our understanding of aerosol-cloud interactions in the Arctic, and the potential changes and feedbacks that may result from decreasing Arctic sea ice cover in the future. In situ measurements have been made during two field campaigns utilising ship-based measurements of surface aerosol sources and airborne measurements of aerosol and cloud microphysical properties, boundary layer dynamics, and radiative forcing. The observations have been complemented by modelling studies on a range of scales: from explicit aerosol and cloud microphysics process modelling, through large eddy simulation and mesoscale models, up to global climate models. This dataset contains meteorological data measured by the Meteorological Airborne Science INstrumentation (MASIN) onboard the British Antarctic Survey Twin Otter aircraft in the North Sea and Svalbard, Norway during the Aerosol Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) project (2013).

  • 10m surface wind speed and direction data are available from instruments mounted on a 10m tower at the Frongoch site, 6km away from the main Natural Environment Research Council (NERC) Mesosphere-Stratosphere-Troposphere (MST) Radar Facility's site in Wales. Wind direction is obtained from a Vector Instruments W200P wind vane and wind speeds from a Vector Instruments A100R anemometer.

  • Version 1 processing of data from the Natural Environment Research Council's (NERC) Mesosphere-Stratosphere-Troposphere (MST) Radar near Aberystwyth in West Wales. The principal measurements made by the MST radar are of the three dimensional wind vector over the altitude range 2 - 20 km, with additional measurements from the mesosphere between 65 and 80 km. These data include both the radial beam data plus the resulting Cartesian products. Surface meteorological measurements from the radar site, ceilometer data, sky camera images and wind speed and direction recorded from a 10m tower located 6km away are also available. Other instruments at the facility have included one of the Met Office's boundary layer wind profilers and NCAS's boundary layer wind profiler.

  • The UK mean wind data describes the mean wind speed and direction, and the direction, speed and time of the maximum gust, all during 1 or more hours, ending at the stated time and date. The data is collected by observation stations across the UK and transmitted within the following message types: SYNOP, HCM, AWSHRLY, DLY3208, HWNDAUTO and HWND6910. The data spans from 1949 to present.