Carbon dioxide

30 record(s)
Type of resources
Contact for the resource
Provided by
Representation types
Update frequencies
From 1 - 10 / 30
  • This dataset contains atmospheric carbon dioxide and methane measurements taken from Bachok Marine Research Station, Malaysia using Los Gatos Research (LGR) Fast Greenhouse Gas Analyser (FGGA) from 2015 to present. LGR FGGA measures trace concentrations of methane (CH4), carbon dioxide (CO2) and water vapor (H2O) simultaneously in flowing gaseous samples (usually air) at rates up to ≥10 Hz. Backok Research Station is located on the east coast of Malaysia, within 100 m of the waters' edge of the South China Sea. This facility is part of the Institute of Ocean and Earth Sciences (IOES) at the University of Malaya (UM). An atmospheric observation tower has been built on the windward side of the main building, for the specific purpose of studying long range transported pollution, air sea exchange, and coastal meteorology. The UK participation of the Methane Observations and Yearly Assessments (MOYA) project was funded by the Natural Environment Research Council (NERC, grant: NE/N015584/1).

  • This dataset contains carbon dioxide concentration measurements from the British Antarctic Survey's Halley Research Station in Antarctica. The Picarro G2301 analyser was used for the measurement of carbon dioxide and located at the Clean Air Sector Laboratory (CASLab). Data times were averaged from the 1 minute data to provide hourly data sets. The UK participation of Southern OceaN optimal Approach To Assess the carbon state, variability and climatic drivers (SONATA) was funded by the Natural Environment Research Council (NERC, grant: NE/P021360/1).

  • This dataset contains atmospheric carbon dioxide, oxygen and atmospheric potential oxygen data from the Cap San Lorenzo container ship. A Li-6252 CO2 analyser and Oxzilla II O2 analyser was used for measurement. The UK participation of Southern OceaN optimal Approach To Assess the carbon state, variability and climatic drivers (SONATA) was funded by the Natural Environment Research Council (NERC, grant: NE/P021360/1).

  • UKCCSRC Flexible Funding 2020. The experimental data was collected on a 1-inch bore gas-liquid two-phase CO2 flow rig in real time. The first column of the table is the time stamp. The second to 19th columns are the mass flowrates, temperatures, densities and tube frequencies from Coriolis flowmeters installed on the gas phase section, liquid phase section, horizontal test section and vertical test section, respectively. The last column of the datafile is the reading from the differential pressure (DP) transducer installed across the Coriolis flowmeter on the horizontal test section. UKCCSRC Flexible Funding 2020: Monitoring of CO2 flow under CCS conditions through multi-modal sensing and machine learning.

  • UKCCSRC Flexible Funding 2020. Experimental data are the acoustic emission (AE) signals collected with three AE sensors when CO2 leak from a CO2 storage cylinder under different pressures. '5MPa_20kgh-1' means the data was collected when the pressure was 5MPa and the leakage rate was 20 kg/h. The sampling frequency of AE signals is 3MHz. UKCCSRC Flexible Funding 2020: Monitoring of CO2 flow under CCS conditions through multi-modal sensing and machine learning.

  • The supporting data for C. Harris et al., 2021, 'The impact of heterogeneity on the capillary trapping of CO2 in the Captain Sandstone', International Journal of Greenhouse Gas Control. We supply experimental and numerical simulation data used in the paper. The supplied codes reproduce each figure. The codes are split into 2 folders, descriptions of each of the folders are given below: 0 - README. This contains detailed instructions on using the supplied files. 1 - Main simulations. This contains the code to produce the main CMG (Computer Modelling Group) simulations outlined in the paper, with various input variable files. 2 - Other figures. This contains the code to produce other figures within the paper which do not rely on numerical simulations, including the experimental data.

  • This dataset comprises ECLIPSE input decks for a 3D reservoir simulation of the CO2 plume at the Sleipner CO2 injection site. This whole reservoir model is an attempt to history match the growth of the plume observed on seismic data. A seismic velocity and density model derived from the 3D reservoir simulation is also included, together with a series of Seismic Unix scripts to create a synthetic seismic section through the Sleipner reservoir model, for comparison with released time-lapse seismic data.

  • Late (0-250 ka) and middle (1050-1280 ka) Pleistocene boron isotope data from planktic foraminifera (Globigerinoides ruber) and oxygen isotopes data from benthic formainifera (Cibicidoides wuellerstorfi). Boron isotopes measured using multi-collector inductively coupled plasma mass-spectrometry (MC-ICPMS).

  • These data were collected to study oxidative weathering processes in the Waiapu River catchment, New Zealand, with potential carbon release sourced from the oxidation of petrogenic organic carbon or carbonate dissolution coupled to the oxidation of sulfide minerals. There, in mudstones exposed in a highly erosive gully complex, in situ CO2 emissions were measured with drilled gas accumulation chambers following the design by Soulet et al. (2018, Biogeosciences 15, 4087-4102, Temporal and spatial variability in CO2 flux can be put in context with environmental changes (e.g., temperature and hydrology). For this, CO2 release from 5 different chambers, which were installed over a transect of ~ 10 m length in a gully above a nearby streambed, was measured several times over a short study period (circa one week). In addition, the gaseous CO2 storage (partial pressure) in the shallow weathering zone was measured prior to a CO2 flux measurement. To understand the source of CO2, gas samples were collected and their stable and radioactive carbon isotope compositions determined. In this process, we identified a contaminant, which was associated with the chamber installation, that can be traced in the gas samples that were collected within 4 days following the installation. Details of the subsequent data analysis and interpretation can be found in: Roylands et al. 2022, Chemical Geology: Capturing the short-term variability of carbon dioxide emissions from sedimentary rock weathering in a remote mountainous catchment, New Zealand. This work was supported by the European Research Council (Starting Grant to Robert G. Hilton, ROC-CO2 project, grant 678779).

  • This study was carried out jointly by the University of Birmingham and the British Geological Survey. The report addresses the feasibility of using novel quantum-technology-based gravity sensors to monitor underground CO2 storage. Of particular interest is the applicability to upcoming near-surface leak monitoring trials that the British Geological Survey will be conducting at its test site. UKCCSRC Flexible Funding 2021: Feasibility study into Quantum Technology based Gravity Sensing for CCS