Keyword

Model

61 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 61
  • An international long-term collaboration to study the climatic and environmental feedback mechanisms involved in the African monsoon, and in some of its consequences on society and human health. The programme, which started in 2004, has developed a network of ground-based observation stations over Sub-Saharan West Africa to measure heat flux and, for some stations, CO2 and H2O vapour fluxes. Files also include concomitant meteorological measurements (wind, temperature, pressure, humidity, rainfall) and soil physics parameters (soil temperature and moisture). The UK branch of AMMA makes use of several instruments provided by the UK Universities Facility for Atmospheric Measurement (UFAM) which are centred on the Niamey meso-site. The Facility for Airbourne Atmospheric Measurements (FAAM) aircraft was used during the July-August 2006 campaign.

  • Tropospheric ORganic CHemistry Experiment (TORCH) was a Natural Environment Research Council (NERC) Polluted Troposphere Research Programme project (Round 1 - NER/T/S/2002/00145. Duration 2002 - 2005) led by A. Lewis, University of York. TORCH 1 took place in July and August 2003 at Writtle College, near Chelmsford, Essex. This dataset contains methven trajectory model measurements at Reading University computer.

  • Tropospheric ORganic CHemistry Experiment (TORCH) was a Natural Environment Research Council (NERC) Polluted Troposphere Research Programme project (Round 1 - NER/T/S/2002/00145. Duration 2002 - 2005) led by A. Lewis, University of York. TORCH 1 took place in July and August 2003 at Writtle College, near Chelmsford, Essex. This dataset contains ECMWF trajectories

  • Tropospheric ORganic CHemistry Experiment (TORCH) was a Natural Environment Research Council (NERC) Polluted Troposphere Research Programme project (Round 1 - NER/T/S/2002/00145. Duration 2002 - 2005) led by A. Lewis, University of York. TORCH 2 took place in April and May 2004 at Weybourne Atmospheric Observatory, on the north Norfolk coast. This dataset contains ECMWF trajectories.

  • The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) was organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under International Geosphere Bisosphere Programme (IGBP) and World Climate Research Programme (WCRP). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACC-MIP) consists of several sets of simulations that have were designed to facilitate useful evaluation and comparison of the AR5 (Intergovernmental Committee on Climate Change Assessment Report 5) transient climate model simulations. This dataset contains measurements from climate simulations from MeteoFrance of the 20th century and the future projections, which output feedback between dynamics, chemistry and radiation in every model time step. The data are collected from running the latest set of ozone precursor emissions scenarios, which output tropospheric ozone changes from 1850 to 2100.

  • The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) was organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under International Geosphere Bisosphere Programme (IGBP) and World Climate Research Programme (WCRP). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACC-MIP) consists of several sets of simulations that have were designed to facilitate useful evaluation and comparison of the AR5 (Intergovernmental Committee on Climate Change Assessment Report 5) transient climate model simulations. This dataset contains measurements from climate simulations of the 20th century and the future projections, which output feedback between dynamics, chemistry and radiation in every model time step. The data are collected from running the latest set of ozone precursor emissions scenarios, which output tropospheric ozone changes from 1850 to 2100.

  • The SLIMCAT Reference Atmosphere for UTLS-Ozone was a set of example output from the SLIMCAT three-dimensional chemical transport model (CTM). It includes three-dimensional global fields of chemical (and sometimes meteorological) variables as computed for twelve dates in 1997, near the middle of each month. This data set includes 12 files, each of them corresponding to one output time near the middle of each month of Year 1997 (12 Jan, 11 Feb, 13 Mar, 12 Apr, 12 May, 11 Jun, 11 Jul, 10 Aug, 19 Sept, 19 Oct, 18 Nov, 18 Dec). Each file contains the calculated 3-D distribution of 37 chemical species or families and 6 meteorological variables. The model used is the SLIMCAT chemistry transport model (CTM). The model was run from October 1991 and forced by the UK Met Office analyses. The model used 18 isentropic levels. The vertical coordinate in the data files is the globally averaged altitude. The real lat/lon-dependent altitude is given in the ALT field recorded in the files. The THETA field gives the real model theta levels (which are constant with latitude/longitude). Data from Martyn Chipperfield, University of Leeds. NERC Research Programme UTLS-Ozone (Upper Troposphere and Lower Stratosphere) and National Centre for Earth Observation (NCEO).

  • The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) was organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under International Geosphere Bisosphere Programme (IGBP) and World Climate Research Programme (WCRP). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACC-MIP) consists of several sets of simulations that have were designed to facilitate useful evaluation and comparison of the AR5 (Intergovernmental Committee on Climate Change Assessment Report 5) transient climate model simulations. This dataset contains measurements from climate simulations from LSCE of the 20th century and the future projections, which output feedback between dynamics, chemistry and radiation in every model time step. The data are collected from running the latest set of ozone precursor emissions scenarios, which output tropospheric ozone changes from 1850 to 2100.

  • The UGAMP ozone climatology consists in a 4-dimensional distribution of ozone that has been built up from the combination of several observational data sets. These data sets include satellite observations (SBUV, SAGE II, SME, TOMS) as well as ozone sonde data provided by the Atmospheric Environment Service of Canada. This global climatology, covering five years (1985 to 1989), was originally established to replace the simpler ozone climatologies used as input in the UGAMP models (ECMWF parameterization or 2-D zonal means deduced from satellite data). It provides monthly means of the ozone column above the grid levels as well as 5-year averages and zonal averages of these monthly means, on a 2.5 x 2.5 deg horizontal grid and over 47 levels, from the ground up to 0.001 mb. Software to convert ozone columns into mixing ratio and to interpolate the data on any required grid is also available.

  • The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) was organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under International Geosphere Bisosphere Programme (IGBP) and World Climate Research Programme (WCRP). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACC-MIP) consists of several sets of simulations that have been designed to facilitate useful evaluation and comparison of the AR5 (Intergovernmental Committee on Climate Change Assessment Report 5) transient climate model simulations. The proposed list of experiments and diagnostics was aimed at providing necessary information for scientific studies spanning the AC&C interests. This dataset collection contains chemistry and climate model measurements.