University of Strathclyde
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Scale
Resolution
-
This presentation on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Cranfield Biannual, 22.04.15. Grant number: UKCCSRC-C1-40.
-
This poster on the UKCCSRC Call 1 project Flexible CCS Network Development (FleCCSnet) was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-40. The aim of the project was to carry out research to enable the production of design and operating guidelines for CCS pipeline networks in order that these networks can react effectively to short, medium and long term variations in the availability and flow of CO2 from capture plants and also to the constraints imposed on the system by the ability (or otherwise) of CO2 storage facilities to accept variable flow. The amount of CO2 captured at a power station is expected to become more variable in the future as the electricity grid brings in more and more intermittent renewable energy (meaning a conventional power station is temporarily not needed or in reduced operation as the renewable energy takes precedent). The storage site will also face periods of maintenance which will impose constraints on the flow into the store and it is also important to look at the case of upset conditions in order to be able to predict any potential problems. Solutions to these all these issues need to be factored into the design of the CCS network, the focus of the project was to identify the issues surrounding flexibility and explore some of them.
-
This presentation on the UKCCSRC Call 1 project 3D Mapping of Large-Scale Subsurface Flow Pathways using Nanoseismic Monitoring was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C1-19.
-
The project will three-dimensionally image hydraulically conductive features in the reservoir, caprock and overburden of an active CO2 injection site: the Aquistore site, Canada. Our research will provide important information on potential migration pathways within the storage complex to inform future monitoring strategies at the Aquistore site and at future storage sites. We will monitor micro-seismic events prior to, and during, CO2 injection using a three-component nanoseismic surface monitoring array which will complement data collected by the existing geophone network at the site. This analysis can be used to provide deep focussed monitoring information on permeability enhancement near the injection point. As injection continues it will also enable imaging of any flowing features within the caprock. Grant number: UKCCSRC-C1-19.
-
This dataset provides the linepacking times that have been generated for a set of pipeline dimensions, flow rates, lengths and pressure conditions. This work has been funded by the UK Carbon Capture and Storage Research Centre within the framework of the FleCCSnet project (UKCCSRC-C1-40). The UKCCSRC is supported by the EPSRC as part of the Research Councils UK Energy Programme (https://doi.org/10.1016/j.ijggc.2017.06.002). This dataset forms the basis of the work and analysis presented in the paper: Aghajani, H, Race, JM, Wetenhall, B, Sanchez Fernandez, E, Lucquiaud, M & Chalmers, H 2017, 'On the potential for interim storage in dense phase CO2 pipelines' International Journal of Greenhouse Gas Control.
-
Simplified reservoir models are used to estimate the boundary conditions (pressure, temperature and flow) that are relevant to the primary aims of this project. A set of boundary conditions are defined at the wellhead that represent the behaviour of the store. Data relates to publication: Sanchez Fernandez, E., Naylor, M., Lucquiaud, M., Wetenhall, B., Aghajani, H., Race, J., Chalmers, H. Impacts of geological store uncertainties on the design and operation of flexible CCS offshore pipeline infrastructure (2016) International Journal of Greenhouse Gas Control, 52, pp. 139-154. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978197316&doi=10.1016%2fj.ijggc.2016.06.005&partnerID=40&md5=d567f0e06f561613554a1f1c2e230194 DOI: 10.1016/j.ijggc.2016.06.005
-
This is a blog (Workshop1, 30.04.14) on the UKCCSRC Call 1 project, Flexible CCS Network Development. Grant number: UKCCSRC-C1-40.
-
This poster on the UKCCSRC Call 2 project Shelter and Escape in the Event of a Release of CO2 from CCS Infrastructure (S-CAPE) was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-179. Pipelines are acknowledged as one of the most efficient and cost-effective methods for transporting large volumes of various fluids over long distances and therefore the majority of proposed schemes for Carbon Capture and Storage (CCS) involve high pressure pipelines transporting CO2. In order to manage the risk in the event of the failure of a carbon dioxide (CO2) pipeline, it is a core requirement that a separation distance between pipelines and habitable dwellings is defined to ensure a consistent level of risk. The aim of this project is to develop validated and computationally efficient shelter and escape models describing the consequences to the surrounding population of a CO2 release from CCS transportation infrastructure. The models will allow pipeline operators, regulators and standard setters to make informed and appropriate decisions regarding pipeline safety and emergency response. This poster presents some preliminary findings from the S-Cape project and: • Describes the development of analytical and Computational Fluid Dynamic (CFD) models to calculate the change in internal CO2 concentration within a building engulfed by a dispersing cloud of CO2. • Investigates the sensitivity of the CO2 concentration within a building to wind speed and the temperature of the CO2 in the pipeline. • Demonstrates how CFD models can be used to verify results obtained using computationally efficient analytical models.
-
Compilation of CO2 release field experiments conducted worldwide for which the research results are publicly available prior to May 2017. This includes 14 field sites and 41 field experiments. For each field site, where possible, there is data on: The project: including primary aims, partners, total funding, duration, current status, website. Site information: including geology (target formation and overburden), hydrology, environment. Field experiment set-up: including injection depth, well orientation. Summary activity: total number of experiments at the site, total CO2 released. For each experiment at each site, where possible, there is data on: Injection parameters, including injection strategy, rate, duration, start and end date, CO2 source and properties, use of tracers; Site parameters, such as groundwater depth at time of experiment; Leakage to surface, including whether CO2 leakage to surface occurred, quantitation; Characteristics of surface leakage, including location, distribution, time taken to reach surface, evolution as experiment progresses; Subsurface CO2 spread, in soil gas and groundwater interaction, environmental impact; Monitoring including area monitored, duration of monitoring before, during, and after the release. Data sources are clearly cited. Paper reference: https://www.sciencedirect.com/science/article/pii/S0012825218304264?dgcid=author.
-
This poster on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Cambridge Biannual, 02.04.14. Grant number: UKCCSRC-C1-40.