From 1 - 10 / 39
  • This poster on the UKCCSRC Call 2 project, Shelter and Escape in the Event of a Release of CO2 from CCS Infrastructure (S-CAPE), was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C2-179.

  • This is a blog (Workshop1, 30.04.14) on the UKCCSRC Call 1 project, Flexible CCS Network Development. Grant number: UKCCSRC-C1-40.

  • This presentation on the UKCCSRC Call 1 project 3D Mapping of Large-Scale Subsurface Flow Pathways using Nanoseismic Monitoring was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C1-19.

  • This dataset contains: 1. An excel spreadsheet of field data from Tipperary pool, including CO2 bubble locations, raw and derived flux data, and field description. March 2017 field campaign. 2. Python scripts for two point correlation function, a spatial statistical method used to describe the spatial distribution of points, and applied to Tipperary pool CO2 bubbling points to determine geological control on their distribution. As reported in: Roberts, J.J., Leplastrier, A., Feitz, A., Bell, A., Karolyte, R., Shipton, Z.K. Structural controls on the location and distribution of CO2 leakage at a natural CO2 spring in Daylesford, Australia. IJGHGC.

  • This Microsoft Excel document contains 5 worksheets providing data produced by research as part of UKCCSRC Call 1 funded project (grant number UKCCSRC-C1-31) and UKCCSRC funded international exchange. These data are presented and discussed in the manuscript "Geochemical tracers for monitoring offshore CO2 stores" by J. Roberts, S. Gilfillan, L. Stalker, M. Naylor, https://doi.org/10.1016/j.ijggc.2017.07.021. Then data details the assumptions around background concentrations of chemical tracers in the atmosphere and seawater, cost per litre, and how tracer detection concentrations (and so cost and potential environmental impact were calculated).

  • This presentation on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Cranfield Biannual, 22.04.15. Grant number: UKCCSRC-C1-40.

  • This presentation on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Workshop1ES, 30.04.14. Grant number: UKCCSRC-C1-40.

  • This poster on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-40.

  • The project will three-dimensionally image hydraulically conductive features in the reservoir, caprock and overburden of an active CO2 injection site: the Aquistore site, Canada. Our research will provide important information on potential migration pathways within the storage complex to inform future monitoring strategies at the Aquistore site and at future storage sites. We will monitor micro-seismic events prior to, and during, CO2 injection using a three-component nanoseismic surface monitoring array which will complement data collected by the existing geophone network at the site. This analysis can be used to provide deep focussed monitoring information on permeability enhancement near the injection point. As injection continues it will also enable imaging of any flowing features within the caprock. Grant number: UKCCSRC-C1-19.

  • This poster on the UKCCSRC Call 1 project 3D Mapping of Large-Scale Subsurface Flow Pathways using Nanoseismic Monitoring was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-19. Injection of fluids into geological formations induces microseismic events due to pressure changes causing either opening mode or shear mode fracturing. Injection for CO2 storage is designed to be well below the pressures required for hydraulic fracturing. Due to the inherent heterogeneity of geological formations, some existing structures will be critically stressed so small microseismic events are inevitable. Current reservoir monitoring strategies either examine time-lapse variations in the rock’s elastic properties (4D seismic) over diffuse areas, or aim to detect leakage from diffuse and point sources at the seabed (e.g. the QICS project). The aim of the project is twofold: • test the potential of a new technology (nanoseismics) for passive seismic monitoring that aims to image focused flow pathways at depth of an active CO2 injection site: the Aquistore site, Canada; • use a multi-disciplinary approach to interpret passive seismic data sets obtained during operation of the same site.