Contact for the resource

University of Strathclyde

35 record(s)


Type of resources



INSPIRE themes

Contact for the resource

Provided by



Representation types

Update frequencies



From 1 - 10 / 35
  • This poster on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-40.

  • This dataset provides the linepacking times that have been generated for a set of pipeline dimensions, flow rates, lengths and pressure conditions. This work has been funded by the UK Carbon Capture and Storage Research Centre within the framework of the FleCCSnet project (UKCCSRC-C1-40). The UKCCSRC is supported by the EPSRC as part of the Research Councils UK Energy Programme ( This dataset forms the basis of the work and analysis presented in the paper: Aghajani, H, Race, JM, Wetenhall, B, Sanchez Fernandez, E, Lucquiaud, M & Chalmers, H 2017, 'On the potential for interim storage in dense phase CO2 pipelines' International Journal of Greenhouse Gas Control.

  • This is a blog (Workshop1, 30.04.14) on the UKCCSRC Call 1 project, Flexible CCS Network Development. Grant number: UKCCSRC-C1-40.

  • The project will three-dimensionally image hydraulically conductive features in the reservoir, caprock and overburden of an active CO2 injection site: the Aquistore site, Canada. Our research will provide important information on potential migration pathways within the storage complex to inform future monitoring strategies at the Aquistore site and at future storage sites. We will monitor micro-seismic events prior to, and during, CO2 injection using a three-component nanoseismic surface monitoring array which will complement data collected by the existing geophone network at the site. This analysis can be used to provide deep focussed monitoring information on permeability enhancement near the injection point. As injection continues it will also enable imaging of any flowing features within the caprock. Grant number: UKCCSRC-C1-19.

  • This poster on the UKCCSRC Call 2 project Shelter and Escape in the Event of a Release of CO2 from CCS Infrastructure (S-CAPE) was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-179. Pipelines are acknowledged as one of the most efficient and cost-effective methods for transporting large volumes of various fluids over long distances and therefore the majority of proposed schemes for Carbon Capture and Storage (CCS) involve high pressure pipelines transporting CO2. In order to manage the risk in the event of the failure of a carbon dioxide (CO2) pipeline, it is a core requirement that a separation distance between pipelines and habitable dwellings is defined to ensure a consistent level of risk. The aim of this project is to develop validated and computationally efficient shelter and escape models describing the consequences to the surrounding population of a CO2 release from CCS transportation infrastructure. The models will allow pipeline operators, regulators and standard setters to make informed and appropriate decisions regarding pipeline safety and emergency response. This poster presents some preliminary findings from the S-Cape project and: • Describes the development of analytical and Computational Fluid Dynamic (CFD) models to calculate the change in internal CO2 concentration within a building engulfed by a dispersing cloud of CO2. • Investigates the sensitivity of the CO2 concentration within a building to wind speed and the temperature of the CO2 in the pipeline. • Demonstrates how CFD models can be used to verify results obtained using computationally efficient analytical models.

  • Grant: SCAPE (UKCCSRC Call 2). This is a Matlab code that calculates the change in internal concentration of CO2 in a building as a cloud of CO2 engulfs the building. The CO2 is assumed to enter through any openings in the building. This Matlab code take a series of inputs including wind speed, building geometry, geometry of external temperature and external CO2 concentration (all inputs are listed in the headers of the spreadsheet ‘inputs.xlsx’) and calculates how the internal CO2 concentration and temperature changes over time and the toxic dose of CO2 received by individuals inside the building. Full details will be given in a publication. File formats: .xlsx and .m

  • This presentation on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Workshop1, 30.04.14. Grant number: UKCCSRC-C1-40.

  • This presentation on the UKCCSRC Call 1 project 3D Mapping of Large-Scale Subsurface Flow Pathways using Nanoseismic Monitoring was presented at the UKCCSRC Manchester Biannual Meeting, 13.04.2016. Grant number: UKCCSRC-C1-19.

  • This data contains the output from the first Flexible CCS Network Development (FleCCSnet) workshop of stakeholders discussing the development of CO2 networks in the UK. The first was held on the 30 April 2014 at the University of Edinburgh, UK. The purpose of Workshop 1 was to identify and confirm the key questions to be considered in order to understand the most likely impacts of variability in the CO2 sources and variability in CO2 sinks on CO2 transport system design and operation. There were a total of 21 attendees including 7 representatives from PSE, Scottish Power, BP, SCCS, Parsons Brinckerhoff, Element Energy, and AMEC. The dataset consists of two reports. The first report, 'Developing CO2 networks: Key lessons learnt from the first Flexible CCS Network Development (FleCCSnet) project workshop', summarises the workshop findings, which have been used to create a series of scenarios that were investigated by transient simulation. The scenarios developed are described in the second report, 'Developing CO2 networks: Scenarios building on the first Flexible CCS Network Development (FleCCSnet) project workshop'.

  • This dataset contains: 1. An excel spreadsheet of field data from Tipperary pool, including CO2 bubble locations, raw and derived flux data, and field description. March 2017 field campaign. 2. Python scripts for two point correlation function, a spatial statistical method used to describe the spatial distribution of points, and applied to Tipperary pool CO2 bubbling points to determine geological control on their distribution. As reported in: Roberts, J.J., Leplastrier, A., Feitz, A., Bell, A., Karolyte, R., Shipton, Z.K. Structural controls on the location and distribution of CO2 leakage at a natural CO2 spring in Daylesford, Australia. IJGHGC.