Keyword

Soil

157 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Scale
Resolution
From 1 - 10 / 157
  • This web map service (WMS) depicts estimates of mean values of soil bacteria, invertebrates, carbon, nutrients and pH within selected habitats and parent material characteristics across GB . Estimates were made using CS data using a mixed model approach. The estimated means of habitat/parent material combinations using 2007 data are modelled on dominant habitat and parent material characteristics derived from the Land Cover Map 2007 and Parent Material Model 2009, respectively. Bacteria data is representative of 0 - 15 cm soil depth and includes bacterial community structure as assessed by ordination scores. Invertebrate data is representative of 0 - 8 cm soil depth and includes Total catch, Mite:Springtail ratio, Number of broad taxa and Shannon diversity. Gravimetric moisture content (%) data is representative of 0 - 15 cm soil depth Carbon data is representative of 0-15 cm soil depth and includes Loss-on-ignition (%), Carbon concentration (g kg-1) and Carbon density (t ha-1). Loss-on-ignition was determined by combustion of 10g dry soil at 375 deg C for 16 hours; carbon concentration was estimated by multiplying LOI by a factor of 0.55, and carbon density was estimated by combining carbon concentration with bulk density estimates. Nutrient data is representative of 0 - 15 cm soil depth and includes total nitrogen (N) concentration (%), C:N ratio and Olsen-Phosphorus (mg/kg). pH and bulk density (g cm-3) data is representative of 0 - 15 cm soil depth. Topsoil pH was measured using 10g of field moist soil with 25ml de-ionised water giving a ratio of soil to water of 1:2.5 by weight; bulk density was estimated by making detailed weight measurements throughout the soil processing procedure. Areas, such as urban and littoral rock, are not sampled by CS and therefore have no associated data. Also, in some circumstances sample sizes for particular habitat/parent material combinations were insufficient to estimate mean values.

  • This web map service presents modelled estimates of soil pH, carbon concentration (g kg-1), nitrogen concentration (% dry weight soil) and invertebrate density (individuals m-2) at 1km2 resolution across Great Britain. A Generalized Additive Model approach was used with Countryside Survey soil data from 2007 and including climate, atmospheric deposition, habitat, soil and spatial predictors. The models are based on data from Countryside Survey sample locations across Great Britain and are representative of 0-8cm soil depth for invertebrates and 0-15 cm soil depth for other variables. The Countryside Survey looks at a range of physical, chemical and biological properties of the topsoil from a representative sample of habitats across the UK. Loss-on-ignition (LOI) was determined by combustion of 10g dry soil at 375 degrees Celsius for 16 hours; carbon concentration was estimated by multiplying LOI by a factor of 0.55. Soil N concentration was determined using a total elemental analyser. Soil pH was measured using 10g of field moist soil with 25ml de-ionised water giving a ratio of soil to water of 1:2.5 by weight. Soil invertebrates were extracted from cores using a dry Tullgren extraction method and enumerated by microscope

  • Map service of soil types, geology and vegetation in the Moor House region of the Moor House - Upper Teesdale National Nature Reserve. The site lies in the North Pennine uplands of England and has an area of 74 km2. It is England's highest and largest terrestrial National Nature Reserve (NNR), a UNESCO Biosphere Reserve and a European Special Protection Area. Habitats include exposed summits, extensive blanket peatlands, upland grasslands, pastures, hay meadows and deciduous woodland. Altitude ranges from 290 to 850 m. Moor House - Upper Teesdale is part of the Environmental Change Network (ECN) which is the UK's long-term environmental monitoring programme.

  • Distribution of soil parent materials in the Severn and Wye catchments. These were mapped during the Soil Hydrology Study conducted by JP Bell in 1968-1969: Bell, J.P. (1969). The Soil Hydrology of the Plynlimon Catchments. Institute of Hydrology Report No. 8, Institute of Hydrology, Wallingford, UK.

  • The data comprise measurements of the 'soluble', 'adsorbed' and 'organically bound' 99Tc concentrations in a diverse set of soils following experimental addition of 99TcO4- and incubation in the laboratory under controlled temperature conditions for 897 days. The long term behaviour of 99Tc in aerobic soils was studied by conducting a laboratory-based experiment in which a set of 20 topsoils from central England with contrasting properties (e.g. pH, organic matter content, land use) were contaminated with 99TcO4- and incubated in the dark, in a moist but aerobic condition, at a temperature of 10 deg C for 2.5 yr. The physico-chemical transformations of 99Tc in each soil microcosm were periodically monitored by means of a three-step sequential extraction procedure conducted on subsamples of incubated soil. The resulting dataset enabled quantification of the kinetics of 99Tc transformation in aerobic soils as a function of soil properties and land uses (arable, grassland and moorland/woodland). The data will be useful in developing models of long-term 99Tc bioavailability in aerobic soils under temperate conditions. Full details about this dataset can be found at https://doi.org/10.5285/4622f906-e28a-4210-aa03-d2e4169b1be8

  • This dataset presents modelled estimates of soil carbon concentration (g kg-1) at 1km2 resolution across Great Britain. A Generalized Additive Model approach was used with Countryside Survey soil carbon data from 2007 and including climate, atmospheric deposition, habitat, soil and spatial predictors. The model is based on soil carbon data from 2446 locations across Great Britain and is representative of 0-15 cm soil depth. Loss-on-ignition (LOI) was determined by combustion of 10g dry soil at 375 degrees Celsius for 16 hours; carbon concentration was estimated by multiplying LOI by a factor of 0.55. The Countryside Survey looks at a range of physical, chemical and biological properties of the topsoil from a representative sample of habitats across the UK. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability. Full details about this dataset can be found at https://doi.org/10.5285/3aaa52d3-918a-4f95-b065-32f33e45d4f6

  • Data collected during field and laboratory experiments to investigate the long-term effects of biochar application to soil on greenhouse gas emissions in a bioenergy plantation (Miscanthus X. giganteus). Analysis included monitoring of greenhouse gas emissions (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)), soil physical (bulk density and soil moisture ) and soil chemical analyses (total carbon (C) and nitrogen (N), extractable ammonium and nitrate). Biochar was applied to plots in a bioenergy plantation and emissions of CO2, CH4 and N2O were measured over a two-year period. In addition a laboratory incubation experiment was conducted on soil taken from the Miscanthus field amended with field-incubated biochar to assess the effect on greenhouse gas emissions. Biochar is a carbon rich substances which is being advocated as a climate mitigation tool to increase carbon sequestration and reduce nitrous oxide emissions. Full details about this dataset can be found at https://doi.org/10.5285/e9baffd1-18ad-435e-94e2-01e49c14c547

  • The data encompass measurements in soil and litter, including leaf litter decomposition, soil respiration, and root morphology analysis in the absence and presence of tree roots in the UK. Data were collected in two locations, Alice Holt and Thetford, UK, in October-November 2023, under three different treatments: 1. Root trenching and root ingrowth prevention: roots were severed from the tree in a 2x2 meter area, and a membrane preventing root ingrowth was inserted into the soil, resulting a free of living space. 2. Root trenching: roots were severed from the tree in a 2x2 meter area, but new roots were allowed to grow in that space. 3. Control: The soil remained undisturbed, with no intervention. Full details about this dataset can be found at https://doi.org/10.5285/a912c7d5-6f74-4ee8-b192-b414694025b4

  • This dataset contains details of sediment geochemistry, loss-on-ignition and sediment median particle size for two short reservoir cores collected from two reservoirs (Cowbury Dale and Higher Swineshaw), Stalybridge Tameside, Manchester. Cores were collected in 2018 following a severe moorland wildfire (July 2018) in the two reservoir catchments. Cores were collected from the deepest part of the reservoir using gravity coring and sampled at 2.5 mm intervals for analysis. The work was supported by the Natural Environment Research Council (Grant NE/S011560/1). Full details about this dataset can be found at https://doi.org/10.5285/4f447446-5461-48b2-b154-ff7094176502

  • [THIS DATASET HAS BEEN WITHDRAWN]. Carbon and nitrogen content (g per g soil) of the free-light fraction (LF), the occluded particulate fraction (OF), the mineral associated organic matter fraction (MAOM), the particulate organic matter (POM = LF+OF), soil organic carbon (SOC), total soil nitrogen (TN) and soil organic matter (SOM from loss-on-ignition) of 100 topsoil samples (0-15 cm) from the UKCEH Countryside Survey 2019/20 are presented. Full details about this dataset can be found at https://doi.org/10.5285/4fc8a62b-c971-433e-acc3-23423bb75022