Keyword

Phytoplankton taxonomic abundance in water bodies

32 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
Resolution
From 1 - 10 / 32
  • This report is a contribution to the Strategic Environmental Assessment (SEA4) conducted by the Department of Trade and Industry. The plankton community in the SEA4 area is similar to that in the North Sea, with variations in the abundances of some individual species. Emphasis in this review is put on trends in the abundances of major phytoplankton and zooplankton taxa over the last 40 years. The study is based on a unique long-term dataset of plankton abundance in the North Atlantic and the North Sea acquired by the Continuous Plankton Recorder (CPR). In the phytoplankton community, conspicuous trends are the steady increase in Phytoplankton Colour (an indicator of phytoplankton biomass) since 1960 and the mid 1980s peak in Thalassiosira spp. abundance. Among the zooplankton the decline in the abundance of Calanus finmarchicus and the increase in that of Calanus helgolandicus since 1960 are probably related to increasing sea surface temperatures in the northeast Atlantic. Phytoplankton blooms are discussed, from the normal annual blooms to harmful algal blooms (HABs). Because of the extensive fish farm industry in coastal regions of SEA4, there is considerable interest and ongoing research into HABs, but there is no clear evidence that they are increasing in frequency or intensity due to anthropogenic eutrophication. Other important components of the plankton meroplankton, picoplankton and megaplankton are also reviewed.

  • This report is a contribution to the Strategic Environmental Assessment (SEA7) conducted by the Department of Trade and Industry (now Department of Energy and Climate Change). The purpose of this report was to provide an assessment of the plankton ecology for SEA7. Owing to the size of the area being assessed this report divides the region into two sections. The basis of this division follows the 200m depth contour generally accepted as being the boundary between the shelf edge and oceanic realms. The first section being waters found on the continental shelf and are therefore more prone to freshwater runoff from land and anthropogenic inputs. The second section represents waters off the shelf edge, these waters are of a more oceanic origin and are less impacted by inputs from land-based sources. Information on the nutrient biogeochemistry (nitrate, phosphate and silicate) are presented for three geographical provinces, the oceanic and shelf edge realms outlined above and also for the Clyde Sea area this being a region noted as having elevated nutrient loadings from anthropogenic sources.

  • This report is a contribution to the Strategic Environmental Assessment (SEA5) conducted by the Department of Trade and Industry (now Department of Energy and Climate Change). This report provides data on the plankton community in the SEA 5 of the North Sea. Data for this report were provided by the Continuous Plankton Recorder Survey, as well as sourced from outside organisations. The SEA 5 area is influenced by the Shelf Edge Current, which breaks off its main route in the form of the Fair Isle Current, the Dooley Current and the East Shetland Inflow. Oceanic water flows into the North Sea in this area, causing periodic incursions of associated planktonic organisms. The report addresses: phytoplankton and zooplankton community composition; Phytoplankton blooms; Abundance of the copepod Calanus; Mero-, pico- and megaplankton; Phytodetritus and vertical fluxes.

  • Categories  

    The Iodide in the ocean project brings together marine and atmospheric scientists in order to address uncertainties in the marine iodine flux and associated ozone sink. Specifically, it aims to quantify the dominant controls on the sea surface iodide distribution and improve parameterisation of the sea-to-air iodine flux and of ozone deposition. It contains data from a combination of laboratory experiments, field measurements and ocean and atmospheric modelling from three cruises as well as worldwide sea surface measurements from 1967-2018 from published manuscripts, published and unpublished data supplied by the originators themselves or provided by repositories. Iodide, iodate and total iodine concentrations were measured on three cruises: BOBBLE, June to July 2016 in the Bay of Bengal, Sagar-Kanya33 in September 2016 in the Arabian Sea and ISOE9 in January to February 2017 in the Indian and Southern Oceans. Samples were taken from Niskin bottles on conductivity-temperature-depth (CTD) profilers. Laboratory experiments consisted of phytoplankton cultures to measure rates of iodate incorporation and iodide production. This work was carried out by Lucy Carpenter (PI), Claire Hughes (Co-PI) , Liselotte Tinel, and Helmke Hepach at York University, Mark Evans (Co-PI) at the University of Edinburgh. It was funded by the NERC Discovery Science project Iodide in the ocean: distribution and impact on iodine flux and ozone loss (parent grant reference NE/N009983/1 with child grants NE/N009444/1 and NE/N01054X/1 led by Stephen Ball and David Stevens respectively).

  • This report is a contribution to the Strategic Environmental Assessment (SEA3) conducted by the Department of Trade and Industry (now Department of Energy and Climate Change) and has been written as an addendum to the more comprehensive SEA2 document. The two papers give an overview of the phytoplankton and zooplankton community composition in the North Sea and how this has fluctuated through the latter half of the 20th Century in response to environmental change. The study is based on a unique long-term dataset of plankton abundance in the North Atlantic and the North Sea acquired by the Continuous Plankton Recorder (CPR). The dinoflagellate genus Ceratium dominates the phytoplankton community in the North Sea, but diatoms are also important, especially in the southern part. The normal annual blooms of plankton are discussed, as are harmful algal blooms (HABs), which appear to be on the increase, possibly due to a combination of climatic variability and eutrophication. Among the zooplankton, copepods are particularly important and constitute a major food resource for many commercial fish species, such as cod and herring. Calanus is the dominant copepod genus in the North Atlantic. Other important components of the plankton - meroplankton, picoplankton and megaplankton - are also reviewed. Very small picoplankton (~1 micron in diameter) and much larger gelatinous members of the megaplankton (e.g. jellyfish and ctenophores) are poorly sampled by the CPR. Although the picoplankton represents a sizeable fraction of total primary production, its role in the marine ecosystem is poorly understood.

  • This report is a contribution to the Strategic Environmental Assessment (SEA6) conducted by the Department of Trade and Industry (now Department of Energy and Climate Change). This report summarises information on the ecology of planktonic species found in the SEA6 area. The Irish Sea is very diverse not only in the physical-chemical regimes operating upon it, but in the ecology of planktonic organisms found there. Data on the nutrient chemistry of the Irish Sea shows that the eastern Irish Sea is more heavily impacted by nutrients owing to freshwater run-off from land, which is far greater than in the western Irish Sea. Nutrients increased from the 1950's to the 1980's after which time the concentrations have levelled off and in some case declined. The phytoplankton biomass appears to have mirrored the influence of the nutrients both in time and space. Highest biomass (inferred from chlorophyll analysis) is generally found in regions of low salinity and tends to be greatest in the eastern Irish Sea. The phytoplankton community has also been shown to vary throughout the seasons and also within different regions or 'ecohydrodynamic' domains of the Irish Sea. The zooplankton community of the Irish Sea has also undergone significant change over the last thirty or so years. The most noticeable of these changes being a significant decrease in abundance of most of the species recorded. Some species distributions and abundances have been shown to be influenced by climate and it is highly likely that other species of plankton in the Irish Sea are also affected in this way. Climate, or more specifically the North Atlantic Oscillation (NAO), certainly has a major impact upon the physical-chemical environment of the region and this has a direct influence upon the ecology of planktonic organisms found in the Irish Sea.

  • Categories  

    This dataset contains CTD, chlorophyll, and phytoplankton abundance and biomass data gathered through analysis of discrete water samples collected from multiple sailings of the RV Callista. The data were collected offshore of Falmouth, UK to explore the seasonally stratified waters of the Western English Channel in June and July 2013. Discrete water samples were taken with CTD profiles to examine the phytoplankton communities of subsurface chlorophyll maxima. Phytoplankton taxa/groups were identified, counted, and converted to a measure of biomass to analyse phyotplankton communities to determine if subsurface chlorophyll maximum thin layers (<5m thick) have a distinct phytoplankton community structure to that of broader maxima. The data were collected by Michelle Barnett as part of her PhD study funded by the Graduate School of the National Oceanography Centre, Southampton.

  • This report is a contribution to the Department of Trade and Industry's (now Department of Energy and Climate Change) Strategic Environmental Assessment SEA2. It gives an overview of the phytoplankton and zooplankton community composition in the North Sea and how this has fluctuated through the latter half of the 20th Century in response to environmental change. The study is based on a unique long-term dataset of plankton abundance in the North Atlantic and the North Sea acquired by the Continuous Plankton Recorder (CPR). The dinoflagellate genus Ceratium dominates the phytoplankton community in the North Sea, but diatoms are also important, especially in the southern part. The normal annual blooms of plankton are discussed, as are harmful algal blooms (HABs), which appear to be on the increase, possibly due to a combination of climatic variability and eutrophication. Among the zooplankton, copepods are particularly important and constitute a major food resource for many commercial fish species, such as cod and herring. Calanus is the dominant copepod genus in the North Atlantic. Other important components of the plankton, meroplankton, picoplankton and megaplankton are also reviewed. Very small picoplankton (~1 micron in diameter) and much larger gelatinous members of the megaplankton (e.g. jellyfish and ctenophores) are poorly sampled by the CPR. Although the picoplankton represents a sizeable fraction of total primary production, its role in the marine ecosystem is poorly understood. The introduction of non-indigenous plankton in ship's ballast water has been in progress for about a century. There is growing concern about the risk of alien species, and the importance of protecting native biodiversity.

  • Categories  

    This data set comprises hydrographic measurements including temperature, salinity, fluorescence, attenuance, dissolved oxygen concentrations and current velocities. Water samples were also collected for salinity and geochemical analysis, and the data set also includes bathymetric, sediment and upper ocean turbulence measurements. The data were collected over six Science Missions at the Strait of Sicily, West Coast of Scotland (Loch Etive and Loch Fyne), North-East Scotland and Shetland Islands, North Weddell Sea, Isles of Scilly, Southern North Sea (Norfolk Bank) over the period 19 April 1999 – 25 May 2001. The data were collected by both shipboard sensors and those attached to the Autosub (Autonomous Underwater Vehicle) package. Shipboard data collection included deployment of a conductivity-temperature-depth (CTD) package with attached auxiliary sensors. Lowered acoustic Dopper current profilers (LADCPs) were also attached to the CTD frame, while discrete water samples were collected from the CTD stations. Oceanographic, bathymetric and sediment data were collected along the ship’s track. Autosub measurements included standard environmental parameters and acoustic instruments were used to measure ocean bottom relief at high resolution. A camera was also attached to the vehicle, permitting the collection of detailed photographs of the seabed. The broad aims of the Autosub Programme are the collection of interdisciplinary data sets that cannot be obtained by research ships, and demonstration to the scientific and wider user community of the usefulness of an AUV. Investigators: David A Smeed, Kate Stansfield, Julian Overnell, Kenny D Black, Peter Statham, Chris German, Andrew S. Brierley, Paul G. Fernandes, Mark A. Brandon, Alex Cunningham, Peter Burkill, Glen Tarran, Prof. Mike Collins, Dr George Voulgaris, Dr John Trowbridge, Dr Eugene Terray, Steve A Thorpe and Thomas Osborn. The British Oceanographic Data Centre holds the Autosub navigation files, CTD and ADCP data for each of the missions listed above. The data are contained as high resolution time series. The data are presently being processed and have not been fully quality controlled. The Autosub science missions brought together researchers and engineers from a number of UK institutions, with the project being coordinated by the National Oceanography Centre, Southampton.

  • Categories  

    The Shelf Sea Biogeochemistry (SSB) data set comprises hydrographic data, including measurements of temperature, salinity and currents, complemented by bathymetric and meteorological data. The study area is located in the Celtic Sea, shelf seas and shelf-edges around the United Kingdom and Republic of Ireland. The data were collected by a combination of research cruises that spanned from March 2014 to September 2015. Shipboard data collection involved the deployment of conductivity-temperature-depth (CTD) packages in the study area. Continuous measurements of current velocities (using vessel mounted ADCPs, VMADCPs), bathymetry and surface ocean and meteorological properties were collected throughout each cruise. Moorings were deployed in the Celtic Sea in early 2014 and provided approximately two years worth of hydrographic time series data. The SSB programme aims to increase the understanding of the cycling of nutrients and carbon and the controls on primary and secondary production, and their role in wider biogeochemical cycles, which in turn will significantly improve predictive marine biogeochemical and ecosystem models over a range of scales. SSB brings together UK researchers from Bangor University, Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Meteorological Office, National Oceanography Centre (NOC), Plymouth Marine Laboratory (PML), Scottish Association for Marine Science (SAMS), University of Aberdeen, University of East Anglia (UEA), University of Edinburgh, University of Liverpool, University of Oxford, University of Portsmouth and University of Southampton. It also has UK and Irish partners, as Agri-Food and Biosciences Institute (AFBI), Marine Institute and Marine Scotland Science. The programme was divided into five work packages, having Jonathan Sharples as the Principal Investigator for work package 1 (CANDYFLOSS), Martin Solan as Principal Investigator for work package 2 (Biogeochemistry, macronutrient and carbon cycling in the benthic layer), Peter J. Statham as Principal Investigator for work package 3 (Supply of iron from shelf sediments to the ocean), Icarus Allen as Principal Investigator for work package 4 (Integrative Modelling for Shelf Seas Biogeochemistry) and Keith Weston as Principal Investigator for work package 5 (Blue Carbon – How much carbon is stored in UK shelf seas, what influences storage and could it be used in carbon trading?). All data will be managed by the British Oceanographic Data Centre (BODC).