Resolution

30 urn:ogc:def:uom:EPSG::9001

20 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 20
  • This dataset includes polygons representing ecosystem types (ET) and their respective ecosystem services (ES) and disservices (EDS) in the Luanhe River Basin, with attributes recording 14 ecosystem types (ET), 11 provisioning services (PS), ten regulating services (RS), five cultural services (CS), 7 Ecological integrity indicators (EI), and 11 ecosystem disservices (EDS). Full details about this dataset can be found at https://doi.org/10.5285/2252d8a4-0ef3-403f-b2c3-3f7acbcac1d5

  • Data was collected to look at long-term trends in invertebrate ground predators. This dataset consists of count data (by gender) for all species of spider collected from three habitats (mire, dwarf-shrub heath, pine woodland) at the Cairngorms Environmental Change Network (ECN) site between 2004 and 2021. Spiders were collected in pitfall traps on a two-weekly basis between March and early November. Each habitat contained ten pitfall traps, spaced 10 m apart. Samples were aggregated by habitat and collection date prior to analysis. The number of male and females of each species was recorded by the same expert araneologist for the duration (2004-2021). Full details about this dataset can be found at https://doi.org/10.5285/6077cd88-ad40-44bd-806a-fa3cebaa29d7

  • The dataset contains model output from the CityCAT hydrodynamic model showing maximum water depths in Jakarta, Indonesia, during the January/February 2007 flood. The hourly rainfall and hourly lateral inflow boundary conditions from rivers used to obtain the flooding depths are also included. Full details about this dataset can be found at https://doi.org/10.5285/8e58f0bb-3ff1-41e8-b8f4-380983ec68bc

  • The WATCH Forcing data is a twentieth century meteorological forcing dataset for land surface and hydrological models. It consists of three/six-hourly states of the weather for global half-degree land grid points. It was generated as part of the EU FP 6 project "WATCH" (WATer and global CHange") which ran from 2007-2011. The data was generated in 2 tranches with slightly different methodology: 1901-1957 and 1958-2001, but generally the dataset can be considered as continuous. More details regarding the generation process can be found in the associated WATCH technical report and paper in J. Hydrometeorology. To understand how the data grid is formed it is necessary to read the attached WFD-land-long-lat-z files either in NetCDF or DAT formats. The data covers land points only and excludes the Antarctica. Snowf or snowfall is the snowfall rate based on the GPCC bias corrected, undercatch corrected measured in kg/m2/s at 3 hourly resolution averaged over the next 3 hours and at 0.5 x 0.5 degrees spatial resolution. Please note that there is also a WFD Snowf CRU bias corrected dataset, but as the GPCC dataset is the preferred dataset only this snowfall dataset is available from the EIDC. These snowfall datasets contain snowfall data only and need to be combined with the respective WFD rainfall datasets to obtain precipitation data.

  • The WATCH Forcing data is a twentieth century meteorological forcing dataset for land surface and hydrological models. It consists of three/six-hourly states of the weather for global half-degree land grid points. It was generated as part of the EU FP 6 project "WATCH" (WATer and global CHange") which ran from 2007-2011. The data was generated in 2 tranches with slightly different methodology: 1901-1957 and 1958-2001, but generally the dataset can be considered as continuous. More details regarding the generation process can be found in the associated WATCH technical report and paper in J. Hydrometeorology. To understand how the data grid is formed it is necessary to read the attached WFD-land-long-lat-z files either in NetCDF or DAT formats. The data covers land points only and excludes the Antarctica. PSurf or surface pressure is the surface pressure (instantaneous) measured in Pa at 6 hourly resolution and 0.5 x 0.5 degrees spatial resolution.

  • This dataset contains river (fluvial) and surface water (pluvial) flooding maps for the central highlands of Vietnam and surrounding provinces. Flood depth is estimated at 30m horizontal grid spacing for 10 return periods, ranging from the 1 in 5 year to the 1 in 1000 year return period flood. These maps are of relevance to planners and policy makers to estimate which areas of most at risk of flooding and can contribute towards policy such as the sustainable development goals. Full details about this dataset can be found at https://doi.org/10.5285/74e4e6ec-a119-4dc7-8ada-9513252b1b60

  • The WATCH Forcing data is a twentieth century meteorological forcing dataset for land surface and hydrological models. It consists of three/six-hourly states of the weather for global half-degree land grid points. It was generated as part of the EU FP 6 project "WATCH" (WATer and global CHange") which ran from 2007-2011. The data was generated in 2 tranches with slightly different methodology: 1901-1957 and 1958-2001, but generally the dataset can be considered as continuous. More details regarding the generation process can be found in the associated WATCH technical report and paper in J. Hydrometeorology. To understand how the data grid is formed it is necessary to read the attached WFD-land-long-lat-z files either in NetCDF or DAT formats. The data covers land points only and excludes the Antarctica. LWdown or surface incident longwave radiation (also known as downwards long-wave radiation flux ) is the surface incident longwave radiation averaged over the next six hours, measured in W/m2 at 6 hourly resolution and 0.5 x 0.5 degrees spatial resolution.

  • The WATCH forcing data (WFD) is a twentieth century meteorological forcing dataset for land surface and hydrological models. It consists of three/six-hourly states of the weather for global half-degree land grid points. It was generated as part of the EU FP 6 project "WATCH" (WATer and global CHange") which ran from 2007-2011. The data was generated in 2 tranches with slightly different methodology: 1901-1957 and 1958-2001, but generally the dataset can be considered as continuous. More details regarding the generation process can be found in the associated WATCH technical report and paper in J. Hydrometeorology. To understand how the data grid is formed it is necessary to read the attached WFD-land-long-lat-z files either in NetCDF or dat formats. The data covers land points only and excludes the Antarctica. Rainf or rainfall rate is the rainfall rate based on the Global Precipitation Climatology Centre (GPCC) bias corrected, undercatch corrected measured in kg/m2/s at 3 hourly resolution averaged over the next 3 hours and at 0.5 x 0.5 degrees spatial resolution. Please note that there is also a WFD Rainf CRU bias corrected dataset, but as the GPCC dataset is the preferred dataset only this rainfall dataset is available from the EIDC. These rainfall datasets contain rainfall data only and need to be combined with the respective WFD snowfall datasets to obtain precipitation data.

  • This dataset contains Land Cover/Land Use (LCLU) maps for Sindhudurg, Shivamogga and Wayanad, India. LCLU products are state-of-the-art statically stable and area weighted accuracy assessed products. The LCLU product was generated for Kyasanur Forest Disease (KFD), a Zoonotic disease. KFD is an “ecotonal” disease. Diverse forest-plantation mosaics, zone moist evergreen forest and plantation, and low coverage of dry deciduous forest will cause higher risks for KFD. Our LCLU product aimed to separate diverse forest types and plantation and we achieved high accuracy (>90%). The study covers Sindhudurg, Shivamogga, and Wayanad Western Ghats district which belong to Indian state Maharashtra, Karnataka, and Kerala respectively. Full details about this dataset can be found at https://doi.org/10.5285/cacb66de-aea0-41d5-97b3-9eacd4683aaf

  • The data comprises river section, zone and test site delineation, winter Season average NDVI by section and zone 1989-2020, land cover maps seasonally 1989-2020, and derived land cover fractions by section and zone 1989-2020. The data was produced as part of a study to determine how changes in geomorphic form and dynamics due to human alteration to river flows and riparian land management relate to changes in vegetation communities in the Sutlej and Beas Rivers, India. Vegetated and other land cover, including water area, were quantified by winter season NDVI trends (in the plains of Punjab) and seasonal supervised classification of Landsat data for over a 30-year period. The work was supported by the Natural Environment Research Council (Grant NE/S01232X/1). Full details about this dataset can be found at https://doi.org/10.5285/9a96e199-34d0-46f9-9a64-140d300a2531