Contact for the resource

University of Sussex

16 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Representation types

Update frequencies

Resolution

Regions

GEMET keywords

From 1 - 10 / 16
  • Data comprise flower abundance and diversity data and bee abundance, diversity and activity data collected during extensive surveys carried out on farms in Hampshire and West Sussex, southern England between 2013 and 2015. The pollen diets of wild solitary bees were quantified using direct observations and pollen load analysis. The purpose of the study was to provide valuable information to scientists, governments and land managers in designing more effective measures to conserve the broader wild bee community on agricultural land. The work was funded by the Natural Environment Research Council grant NE/J016802/1 and the Game and Wildlife Conservation Trust. Full details about this dataset can be found at https://doi.org/10.5285/a9d713e8-c8d5-4129-8db0-d771443111cf

  • Concentration and accumulation palaeoenvironmental proxy data derived from a 6.3m sedimentary core drilled at Marcacocha, a present-day wetland (formerly a small lake) located at 3355m above sea-level in the Cordillera Oriental of the Peruvian Andes. Multi-proxy analysis of the sediments at decadal to sub-decadal temporal resolution has provided detailed datasets that include sedimentology, palynology, geochemistry, plant macrofossils, diatoms and oribatid mite remains (Chepstow-Lusty et al., 2003, 2007, 2009; Sterken et al., 2006). Select data are presented here relating to the uppermost 1.9m of the sequence (ca. the last 1200 years). The data relate specifically to: Chepstow-Lusty, A., Frogley, M.R., Baker, A.S. Comparison of Sporormiella dung fungal spores and oribatid mites as indicators of large herbivore presence: evidence from the Cuzco region of Peru. J. Arch. Sci. https://doi.org/10.1016/j.jas.2018.12.006 Chepstow-Lusty, A., Bennett, K., Fjeldså, J., Kendall, A., Galiano, W., Tupayachi Herrera, A., 1998. Tracing 4000 years of environmental history in the Cuzco area, Peru, from the pollen record. Mt. Res. Dev. 18, 159–172. Chepstow-Lusty, A., Frogley, M.R., Bauer, B.S., Bush, M.B., Tupayachi Herrera, A., 2003. A late Holocene record of arid events from the Cuzco region, Peru. J. Quat. Sci. 18, 491–502. Chepstow-Lusty, A., Frogley, M.R., Bauer, B.S., Leng, M., Cundy, A., Boessenkool, K.P., Gioda, A., 2007. Evaluating socio-economic change in the Andes using oribatid mite abundances as indicators of domestic animal densities. J. Arch. Sci. 34, 1178–1186. Chepstow-Lusty, A.J., Frogley, M.R., Bauer, B., Leng, M.J., Boessenkool, K.P., Carcaillet, C., Ali, A.A., Gioda, A., 2009. Putting the rise of the Inca empire within a climatic and land management context. Clim. Past 5, 1–14. Sterken, M., Sabbe, K., Chepstow-Lusty, A., Frogley, M., Vanhoutte, K., Verleyen, E., Cundy, A., Vyverman, W., 2006. Climate and land-use changes in the Cuzco region (Cordillera Oriental, South East Peru) during the last 1200 years: a diatom based reconstruction. Arch. Hydrobiol. 165, 289–312.

  • The WATCH Forcing data is a twentieth century meteorological forcing dataset for land surface and hydrological models. It consists of three/six-hourly states of the weather for global half-degree land grid points. It was generated as part of the EU FP 6 project "WATCH" (WATer and global CHange") which ran from 2007-2011. The data was generated in 2 tranches with slightly different methodology: 1901-1957 and 1958-2001, but generally the dataset can be considered as continuous. More details regarding the generation process can be found in the associated WATCH technical report and paper in J. Hydrometeorology. To understand how the data grid is formed it is necessary to read the attached WFD-land-long-lat-z files either in NetCDF or DAT formats. The data covers land points only and excludes the Antarctica. Wind or near surface wind speed at 10m is the near surface wind speed at 10m in m/s-1 at 6 hourly resolution and 0.5 x 0.5 degrees spatial resolution.

  • This dataset consists of soil data for 64 field sites on paired farm sites, with 29 variables measured for soil texture and structural condition, aggregate stability, organic matter content, soil shear strength, fuel consumption, work rate, infiltration rate, water quality and hydrological condition (HOST) data. The study is part of the NERC Rural Economy and Land Use (RELU) programme. A move to organic farming can have significant effects on wildlife, soil and water quality, as well as changing the ways in which food is supplied, the economics of farm business and indeed the attitudes of farmers themselves. Two key questions were addressed in the SCALE project: what causes organic farms to be arranged in clusters at local, regional and national scales, rather than be spread more evenly throughout the landscape; and how do the ecological, hydrological, socio-economic and cultural impacts of organic farming vary due to neighbourhood effects at a variety of scales. The research was undertaken in 2006-2007 in two study sites: one in the English Midlands, and one in southern England. Both are sites in which organic farming has a 'strong' local presence, which we defined as 10 per cent or more organically managed land within a 10 km radius. Potential organic farms were identified through membership lists of organic farmers provided by two certification bodies (the Soil Association and the Organic Farmers and Growers). Most who were currently farming (i.e. their listing was not out of date) agreed to participate. Conventional farms were identified through telephone listings. Respondents' farms ranged in size from 40 to 3000 acres, with the majority farming between 100 and 1000 acres. Most were mixed crop-livestock farmers, with dairy most common in the southern site, and beef and/or sheep mixed with arable in the Midlands. In total, 48 farms were studied, of which 21 were organic farmers. No respondent had converted from organic to conventional production, whereas 17 had converted from conventional to organic farming. Twelve of the conventional farmers defined themselves as practicing low input agriculture. Farmer interview data from this study are available at the UK Data Archive under study number 6761 (see online resources). Further documentation for this study may be found through the RELU Knowledge Portal and the project's ESRC funding award web page (see online resources).

  • The dataset contains a stratified survey of ecological and soil states at sites where fine scale patterns of covariation between vegetation and edaphic characteristics were recorded. Key data collection included leaf area index, moss and organic matter thickness, surface and deeper soil moisture. Data were collected at sites in the Yukon (2013) and Northwest Territories (2014), Canada. Full details about this dataset can be found at https://doi.org/10.5285/36f4e380-d01d-44a7-8321-7a677e6996b2

  • This dataset consists of ecology data from 16 paired field sites; each pair consisting of an organic and conventional farm. A multiscale sampling design was employed to assess the impact of (i) location-within-field (field margin vs. edge vs. centre), (ii) crop type (arable cereal vs. permanent pasture), (iii) farm management (organic vs. conventional) and (iv) landscape-scale management (landscapes that contained low or high fractions of organic land) on a wide range of taxa. Studied taxa include birds, insect pollinators (hoverflies, bumblebees and solitary bees), epigeal arthropods, aphids and their natural enemies, earthworms and plants. The study is part of the NERC Rural Economy and Land Use (RELU) programme. A move to organic farming can have significant effects on wildlife, soil and water quality, as well as changing the ways in which food is supplied, the economics of farm business and indeed the attitudes of farmers themselves. Two key questions were addressed in the SCALE project: what causes organic farms to be arranged in clusters at local, regional and national scales, rather than be spread more evenly throughout the landscape; and how do the ecological, hydrological, socio-economic and cultural impacts of organic farming vary due to neighbourhood effects at a variety of scales. The research was undertaken in 2006-2007 in two study sites: one in the English Midlands, and one in southern England. Both are sites in which organic farming has a 'strong' local presence, which we defined as 10 per cent or more organically managed land within a 10 km radius. Potential organic farms were identified through membership lists of organic farmers provided by two certification bodies (the Soil Association and the Organic Farmers and Growers). Most who were currently farming (i.e. their listing was not out of date) agreed to participate. Conventional farms were identified through telephone listings. Respondents' farms ranged in size from 40 to 3000 acres, with the majority farming between 100 and 1000 acres. Most were mixed crop-livestock farmers, with dairy most common in the southern site, and beef and/or sheep mixed with arable in the Midlands. In total, 48 farms were studied, of which 21 were organic farmers. No respondent had converted from organic to conventional production, whereas 17 had converted from conventional to organic farming. Twelve of the conventional farmers defined themselves as practicing low input agriculture. Farmer interview data from this study are available at the UK Data Archive under study number 6761. Soil data from agricultural land under differing crop and management regimes,are also available. Further documentation for this study may be found through the RELU Knowledge Portal and the project's ESRC funding award web page (see online resources).

  • This dataset consists of soils dated using 210Pb in profiles from permafrost in subarctic Canada. Soil cores were sampled during early summer in 2013 and 2014 from peatland plateaus, thawing peatland plateaus, burnt and unburnt black spruce forests in Yukon and Northwest Territories. The upper part of the soil profile was dated using 210Pb to quantify recent carbon accumulation rates. Full details about this dataset can be found at https://doi.org/10.5285/3b22fba5-8429-4fdc-849c-b4c248ea744d

  • This datasets contains measures of soil thaw depth from permafrost in subarctic Canada. Soil thaw depth was measured in 2013 and 2014 in sites from Yukon and Northwest Territories. Full details about this dataset can be found at https://doi.org/10.5285/fb88febb-9b53-4253-9856-7b35cbdf7080

  • This dataset consists of soil moisture profiles from permafrost in subarctic Canada. Soil mositure profiles were monitored during summer in 2013 and 2014 in Yukon and Northwest Territories. Monitored sites included peatland plateaus, unburnt and burnt black spruce forests, and additional sites. Full details about this dataset can be found at https://doi.org/10.5285/189900a4-f7a9-41bd-b6f5-eef694209f87

  • This dataset contains methane fluxes from peatland plateaus and thawing peatland plateaus and from burnt and unburnt forests from permafrost in subarctic Canada. Methane fluxes were monitored during summer in 2013 and 2014 in Yukon and Northwest Territories. Monitored sites included peatland plateaus and thawing features of peatland plateaus. Full details about this dataset can be found at https://doi.org/10.5285/1d4d70ad-dc38-4e5f-bc39-066babca2fb2