From 1 - 10 / 122
  • These ancillary datasets were used in the production of the "Active", "Passive" and "Combined" soil moisture data products, created as part of the European Space Agency's (ESA) Soil Moisture Climate Change Initiative (CCI) project. The set of ancillary datasets include datasets of Average Vegetation Optical Depth data from AMSR-E, Soil Porosity, Topographic Complexity and Wetland fraction, as well as a Land Mask. This version of the ancillary datasets were used in the production of the v04.2 Soil Moisture CCI data. The "Active" "Passive" and "Combined" soil moisture products which they were used in the development of are fusions of scatterometer and radiometer soil moisture products, derived from the AMI-WS, ASCAT, SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2 and SMOS satellite instruments. To access these products or for further details on them please see their dataset records. Additional reference documents and information relating to them can also be found on the CCI Soil Moisture project website. Soil moisture CCI data should be cited using all three of the following references: 1. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001 2. Gruber, A., Dorigo, W. A., Crow, W., Wagner W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing. PP. 1-13. 10.1109/TGRS.2017.2734070 3. Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M. , Wagner, W., McCabe, M.F., Evans, J.P., van Dijk, A.I.J.M. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297, doi: 10.1016/j.rse.2012.03.014

  • This v2.0 SST_cci Advanced Very High Resolution Radiometer (AVHRR) Level 2 Preprocessed (L2P) Climate Data Record (CDR) consists of stable, low-bias sea surface temperature (SST) data from the AVHRR series of satellite instruments. It covers the period between 08/1981 and 12/2016. This L2P product provides these SST data on the original satellite swath with a single orbit of data per file. The dataset has been produced as part of the European Space Agency (ESA) Climate Change Initiative Sea Surface Temperature project(ESA SST_cci). The data products from SST CCI accurately map the surface temperature of the global oceans over the period 1981 to 2016 using observations from many satellites. The data provide independently quantified SSTs to a quality suitable for climate research. Data are made freely and openly available under a Creative Commons License by Attribution (CC By 4.0) https://creativecommons.org/licenses/by/4.0/

  • The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises the Level 2 aerosol products from ATSR-2, using the ADV algorithm, version 2.30. For further details about these data products please see the linked documentation.

  • The CO2_GOS_OCFP dataset comprises level 2, column-averaged dry-air mole fractions (mixing ratios) of carbon dioxide (XCO2) from the Thermal and Near Infrared Sensor for Carbon Observations (TANSO-FTS) NIR and SWIR spectra, onboard the Japanese Greenhouse gases Observing Satellite (GOSAT). It has been produced using the University of Leicester Full-Physics Retrieval Algorithm, which is based on the original Orbiting Carbon Observatory (OCO) Full Physics Retrieval Algorithm and modified for use on GOSAT spectra. A second product, generated using the alternative SRFP algorithm, is also available. The OCFP product is considered the GHG_cci baseline product and it is advised that users who aren't sure which of the two products to use, use this product. For more information regarding the differences between baseline and alternative algorithms please see the Greenhouse Gases CCI data products webpage. The XCO2 product is stored in NetCDF format with all GOSAT soundings on a single day stored in one file. For further information, including details of the OCFP algorithm and the TANSO-FTS instrument, please see the associated product user guide (PUG).

  • This v2.0 SST_cci Level 4 Analysis Climate Data Record (CDR) provides a globally-complete daily analysis of sea surface temperature (SST) on a 0.05 degree regular latitude-longitude grid. It combines the orbit data from the Advanced High Resolution Radiometer (AVHRR) and Along Track Scanning Radiometer (ATSR) SST_cci Climate Data Records, using a data assimilation method to provide SSTs where there were no measurements. These data cover the period between 09/1981 and 12/2016. The dataset has been produced as part of the European Space Agency (ESA) Climate Change Initiative Sea Surface Temperature project(ESA SST_cci). The data products from SST CCI accurately map the surface temperature of the global oceans over the period 1981 to 2016 using observations from many satellites. The data provide independently quantified SSTs to a quality suitable for climate research. Data are made freely and openly available under a Creative Commons License by Attribution (CC By 4.0) https://creativecommons.org/licenses/by/4.0/ .

  • The ESA Fire Disturbance Climate Change Initiative (CCI) project has produced maps of global burned area derived from satellite observations. The AVHRR - LTDR Grid v1.1 product described here contains gridded data of global burned area derived from spectral information from the AVHRR (Advanced Very High Resolution Radiometer) Land Long Term Data Record (LTDR) v5 dataset produced by NASA. The dataset provides monthly information on global burned area on a 0.25 x 0.25 degree resolution grid from 1982 to 2018. The year 1994 is omitted as there was not enough input data for this year. The dataset is distributed in NetCDF files, and it includes 4 layers: sum of burned area, standard error, fraction of burnable area and fraction of observed area. For further information on the product and its format see the Product User Guide.

  • This dataset provides a Climate Data Record of Sea Ice Thickness for the SH polar region, derived from the SIRAL (SAR Interferometer Radar ALtimeter) instrument on the CryoSat-2 satellite at Level 3C (L3C). This product was generated in the context of the ESA Climate Change Initiative Programme (ESA CCI) by the Sea Ice CCI (Sea_Ice_cci) project. It provides daily sea ice thickness data gridded on a Lambeth Azimuthal Equal Area grid for the period November 2010 to April 2017. Note, the southern hemisphere sea ice thickness dataset is an experimental climate data record, as the algorithm does not properly considers the impact of the complex snow morphology in the freeboard retrieval. Sea ice thickness is provided for all months but needs to be considered biased high in areas with high snow depth and during the southern summer months. Please consult the Product User Guide (PUG) for more information.

  • This data set is part of the ESA Sea Ice Climate Change Initiative (CCI) project. The dataset provides sea ice concentration for the Antarctic region, derived from the AMSR-E satellite instrument. It consists of daily gridded SIC fields based on Passive Microwave Radiometer measurements from the AMSR-E instrument with a 25km grid spacing, along with the total standard error (uncertainty) and quality control flags. It has been built upon the algorithms and processing software originally developed at the EUMETSAT OSI SAF for their SIC dataset. Please note, in the sea ice concentration data set - on purpose - no weather filter has been applied to eliminate weather-induced spurious ice in the open ocean along the ice edge in order to avoid discarding regions with a real sea ice cover. Users are advised to read the product user guide and the publication by Ivanova et al. [2015] (see documentation section). A second sea ice dataset has also been produced from the SSM/I instrument, and these should be regarded as individual datasets and not combined without further investigations about the compatibility. The project team warns potential users that the AMSR-E SIC time-series is less mature than the SSM/I one, and that the former should be used with extra care, possibly after visual inspection or comparison to other data sources (such as the SSM/I time series during the overlap period)

  • This dataset contains permafrost extent data produced as part of the European Space Agency's (ESA) Climate Change Initiative (CCI) Permafrost project. It forms part of the first version of their Climate Research Data Package (CRDP v1). It is derived from a thermal model driven and constrained by satellite data. Grid products of CDRP v1 are released in annual files, covering the start to the end of the Julian year. This corresponds to average annual ground temperatures (at 2 m depth) which forms the basis for the retrieval of yearly fraction of permafrost-underlain and permafrost-free area within a pixel. A classification according to the IPA (International Permafrost Association) zonation delivers the well-known permafrost zones, distinguishing isolated (0-10%) sporadic (10-50%), discontinuous (50-90%) and continuous permafrost (90-100%). Case A: It covers the Northern Hemisphere (north of 30°) for the period 2003-2017 based on MODIS Land Surface temperature merged with downscaled ERA5 reanalysis near-surface air temperature data. Case B: It covers the Northern Hemisphere (north of 30°) for the period 1997-2002 based on downscaled ERA5 reanalysis near-surface air temperature data which are bias-corrected with the Case A product for the overlap period 2003-2018 using a pixel-specific statistics for each day of the year.

  • This dataset contains global monthly averaged effective sulphur dioxide (SO2) column amounts derived from the Infrared Atmospheric Sounding Interferometer (IASI) instrument on the METOP-A satellite. The data have been produced by the University of Oxford as part of the NERC Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET). This dataset has been produced using the Walker et al. (2011, 2012) linear retrieval developed for the Infrared Atmospheric Sounding Interferometer, which is able to detect sulphur dioxide (SO2) gas. This dataset contains monthly averages of this retrieval output from June 2007 to December 2014 across the globe, within which it is possible to identify the period and the location of when we have an anomaly of SO2 in atmosphere. This includes volcanic eruptions alongside non-eruptive volcanic degassing, and human pollution sources. Within the dataset are the average effective SO2 column amounts in Dobson Units (DU) for 0.125º by 0.125º gridboxes across the globe. Also included for each grid box are the standard deviation, and the number of pixel boxes contributing to the mean. The results from this dataset are discussed in Taylor et al. (2018) 'Exploring the utility of IASI for monitoring volcanic SO2 emissions' in review at JGR: Atmospheres.