Data are in NetCDF format
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
-
This dataset contains monthly-averaged land surface temperatures (LSTs) and their uncertainty estimates from multiple Infra-Red (IR) instruments on Low Earth Orbiting (LEO) sun-synchronous (a.k.a. polar orbiting) satellites. Satellite land surface temperatures are skin temperatures, which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to 10:30 and 22:30 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset is comprised of LSTs from a series of instruments with a common heritage: the Along-Track Scanning Radiometer 2 (ATSR-2), the Advanced Along-Track Scanning Radiometer (AATSR) and the Sea and Land Surface Temperature Radiometer on Sentinel 3A (SLSTRA); and data from the Moderate Imaging Spectroradiometer on Earth Observation System - Terra (MODIS Terra) to fill the gap between AATSR and SLSTR. So, the instruments contributing to the time series are: ATSR-2 from August 1995 to July 2002; AATSR from August 2002 to March 2012; MODIS Terra from April 2012 to July 2016; and SLSTRA from August 2016 to December 2020. Inter-instrument biases are accounted for by cross-calibration with the Infrared Atmospheric Sounding Interferometer (IASI) instruments on Meteorological Operational (METOP) satellites. For consistency, a common algorithm is used for LST retrieval for all instruments. Furthermore, an adjustment is made to the LSTs to account for the half-hour difference between satellite equator crossing times. For consistency through the time series, coverage is restricted to the narrowest instrument swath width. The dataset coverage is near global over the land surface. During the period covered by ATSR-2, small regions were not covered due to downlinking constraints (most noticeably a track extending southwards across central Asia through India – further details can be found on the ATSR project webpages at http://www.atsr.rl.ac.uk/dataproducts/availability/coverage/atsr-2/index.shtml). LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. Full Earth coverage is achieved in 3 days so the daily files have gaps where the surface is not covered by the satellite swath on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. Dataset coverage starts on 1st August 1995 and ends on 31st December 2020. There are two gaps of several months in the dataset: no data were acquired from ATSR-2 between 23 December 1995 and 30 June 1996 due to a scan mirror anomaly; and the ERS-2 gyro failed in January 2001, data quality was less good between 17th Jan 2001 and 5th July 2001 and are not used in this dataset. Also, there is a twelve day gap in the dataset due to Envisat mission extension orbital manoeuvres from 21st October 2010 to 1st November 2010. There are minor interruptions (1-10 days) during satellite/instrument maintenance periods or instrument anomalies. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using the (UoL) LST retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.
-
This dataset contains land surface temperatures (LSTs) and their uncertainty estimates from the Sea and Land Surface Temperature Radiometer (SLSTR) on Sentinel 3B. Satellite land surface temperatures are skin temperatures, which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to the morning and evening Sentinel 3B equator crossing times which are 10:00 and 22:00 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset coverage is global over the land surface. LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. SLSTRB achieves full Earth coverage in 1 day so the daily files have gaps where the surface is not covered by the satellite swath during day or night on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. Dataset coverage starts on 17th November 2018 and ends on 31st December 2020. There are minor interruptions (1-10 days) during satellite/instrument maintenance periods or instrument anomalies. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using the (UoL) LST retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.
-
This data set is part of the ESA Sea Ice Climate Change Initiative (CCI) project. The dataset provides sea ice concentration for the Antarctic region, derived from the AMSR-E satellite instrument. It consists of daily gridded SIC fields based on Passive Microwave Radiometer measurements from the AMSR-E instrument with a 25km grid spacing, along with the total standard error (uncertainty) and quality control flags. It has been built upon the algorithms and processing software originally developed at the EUMETSAT OSI SAF for their SIC dataset. Please note, in the sea ice concentration data set - on purpose - no weather filter has been applied to eliminate weather-induced spurious ice in the open ocean along the ice edge in order to avoid discarding regions with a real sea ice cover. Users are advised to read the product user guide and the publication by Ivanova et al. [2015] (see documentation section). A second sea ice dataset has also been produced from the SSM/I instrument, and these should be regarded as individual datasets and not combined without further investigations about the compatibility. The project team warns potential users that the AMSR-E SIC time-series is less mature than the SSM/I one, and that the former should be used with extra care, possibly after visual inspection or comparison to other data sources (such as the SSM/I time series during the overlap period)
-
This dataset contains permafrost ground temperature data produced as part of the European Space Agency's (ESA) Climate Change Initiative (CCI) Permafrost project. It forms part of the first version of their Climate Research Data Package (CRDP v1). It is derived from a thermal model driven and constrained by satellite data. Grid products of CDRP v1 are released in annual files, covering the start to the end of the Julian year. This corresponds to average annual ground temperatures and is provided for specific depths (surface, 1m, 2m, 5m , 10m). Case A: It covers the Northern Hemisphere (north of 30°) for the period 2003-2017 based on MODIS Land Surface temperature merged with downscaled ERA5 reanalysis near-surface air temperature data. Case B: It covers the Northern Hemisphere (north of 30°) for the period 1997-2002 based on downscaled ERA5 reanalysis near-surface air temperature data which are bias-corrected with the Case A product for the overlap period 2003-2018 using a pixel-specific statistics for each day of the year.
-
This dataset contains the Gravimetric Mass Balance (GMB) basin product for the Antarctic Ice Sheet (AIS), generated by TU Dresden as part of the ESA Antarctic Ice Sheet Climate Change Initiatve (Antarctic_Ice_Sheet_cci). The Gravimetric Mass Balance (GMB) product for the Antarctic Ice Sheet (AIS) is based on monthly snapshots of the Earth’s gravity field provided by the Gravity Recovery and Climate Experiment (GRACE) and its follow-on satellite mission (GRACE-FO). The product relies on monthly gravity field solutions (L2) of release 06 generated at the Center for Space Research (University of Texas at Austin) and spans the period from April 2002 through July 2020. The GMB product covers the full GRACE mission period (April 2002 - June 2017) and is extended by means of GRACE-FO data starting from June 2018, thus including 187 monthly solutions. The mass change estimation is based on the tailored sensitivity kernel approach developed at TU Dresden. (Groh & Horwath, 2021) The GMB basin product provides time series of integrated mass changes for 26 drainage basins and the aggregations of the Antarctic Peninsula, East Antarctica, West Antarctica and the entire AIS. Based on the GMB basin product, ice mass balance estimates, i.e. linear trend in the change in ice mass, were derived for all drainage basins and aggregations. A gridded GMB product is also available as a separate dataset. Groh, A. & Horwath, M. (2021). Antarctic Ice Mass Change Products from GRACE/GRACE-FO Using Tailored Sensitivity Kernels. Remote Sens., 13(9), 1736. doi:10.3390/rs13091736
-
This dataset contains monthly global data for Oceanic Export Production as part of the BICEP project. Data is provided between 1998-2019 at 9 km resolution. It has been derived from the Ocean Colour Climate Change Initiative v4.2 dataset. Export production can be defined as steady-state Net Community Production (NCP) with all temporal lags accounted for and with a well defined depth horizon over which the community production is integrated over. (Laws 1991). This is the net amount of carbon assimilated in the euphotic zone that will be exported to deeper waters. Export Production can by definition only vary on timescales significantly longer that any processes directly controlling production and respiration as to not violate the steady state assumption.
-
The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains the Version 4.0 Remote Sensing Reflectance product on a geographic projection at approximately 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites). Values for remote sensing reflectance at the sea surface are provided for the standard SeaWiFS wavelengths (412, 443, 490, 510, 555, 670nm) with pixel-by-pixel uncertainty estimates for each wavelength. These are merged products based on SeaWiFS, MERIS and Aqua-MODIS data. Note, this dataset is also contained within the 'All Products' dataset. This data product is on a geographic grid projection, which is a direct conversion of latitude and longitude coordinates to a rectangular grid, typically a fixed multiplier of 360x180. The netCDF files follow the CF convention for this projection with a resolution of 8640x4320. (A separate dataset is also available for data on a sinusoidal projection).
-
The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises Level 3 daily, monthly and yearly gridded aerosol products from the AATSR instrument on the ENVISAT satellite. The data is an uncertainty-weighted ensemble of the outputs of three separate algorithms (the SU, ADV, and ORAC algorithms.) This product is version 2.6 of the ensemble product. Data is provided for the period 2002 to 2012. In the early period, it also contains data from the ATSR-2 instrument on the ERS-2 satellite. A separate ATSR-2 product covering the period 1995-2001 is also available, and together these form a continuous timeseries from 1995-2012. For further details about these data products please see the documentation.
-
The Soil Moisture CCI ACTIVE dataset is one of the three datasets created as part of the European Space Agency's (ESA) Soil Moisture Essential Climate Variable (ECV) Climate Change Initiative (CCI) project. The product has been created by fusing scatterometer soil moisture products, derived from the instruments AMI-WS and ASCAT. PASSIVE and COMBINED products have also been created. The v06.1 ACTIVE product, provided as global daily images in NetCDF-4 classic file format, presents a global coverage of surface soil moisture at a spatial resolution of 0.25 degrees. It is provided in percent of saturation [%] and covers the period (yyyy-mm-dd) 1991-08-05 to 2020-12-31. For information regarding the theoretical and algorithmic base of the product, please see the Algorithm Theoretical Baseline Document. Additional reference documents and information relating to the dataset can also be found on the CCI Soil Moisture project website. The data set should be cited using the following references: 1. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019 2. Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001
-
This dataset consists of daily total column water vapour (TCWV) over land, at a 0.05 degree resolution, observed by various satellite instruments. It has been produced by the European Space Agency Water Vapour Climate Change Initiative (Water_Vapour_cci), and forms part of their TCVW over land Climate Data Record -1 (TCWV-land (CDR-1). This version of the data is v3.1.