Contact for the resource

University of Oslo

15 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Resolution
From 1 - 10 / 15
  • [This dataset is embargoed until January 31, 2022]. Data are presented showing for individual seedling, herbivory damage at the leaf level; galls, pathogens, trail herbivory presence/absence qualitative data; and leaf mortality. Data were collected in each leaf from a plot based fertilisation experiment. The experiment was carried out at the Biological Dynamics of Forest Fragments Project (BDFFP) approximately 100 km north of Manaus. Data were collected bimonthly from February 2019 to January 2020, by the dataset first author. Leaf loss in percentage was made using the choice for direct visual estimate. We also followed the recommendations proposed by the authors, sectoring the leaves with a millimetre grid, improving measurement accuracy. The presence of Galls, pathogens and trail herbivory presence/absence qualitative data were also collected in each leaf. The work was carried out as part of the Amazon Fertilization Experiment (AFEX), funded by the Natural Environment Research Council (NERC), Award reference NE/L007223/1, the Brazilian government (Researcher scholarship) and the Biological Dynamics of Forest Fragments Project (BDFFP - logistical support and camps maintanance). Full details about this dataset can be found at https://doi.org/10.5285/2b8029ff-ddf5-47b2-9231-5fa0cbb6cd41

  • [This dataset is embargoed until January 31, 2022]. Data are presented showing seedling height, diameter at ground height (DGH), total number of leaves, number of leaves with herbivory damage and leaf mortality, from a plot based fertilisation experiment. The experiment was carried out at the Biological Dynamics of Forest Fragments Project (BDFFP) approximately 100 km north of Manaus. Data were collected bimonthlyfrom February 2019 to January 2020, by the dataset first author. Height measurements were made with a tape measure and DRH measurements were made with digital calipers. Leaf numbers, damage and mortality were made from visual observations. The data were collected to investigate the possible effects of different fertiliser applications on seedling height, totalnumber of leaves, number of leaves with herbivory damage and leaf mortality.The work was carried out as part of the Amazon Fertilization Experiment (AFEX), funded by the Natural Environment Research Council (NERC), Award reference NE/L007223/1, by the Brazilian government (Researcher scholarship) and the Biological Dynamics of Forest Fragments Project (BDFFP - logistical support and camps maintanance). Full details about this dataset can be found at https://doi.org/10.5285/2da56eb1-ff01-48de-ba2a-d3afceefc85f

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains emission tracers from UTRAJ model. “Emissions tracers” are calculated by integrating surface emissions along each trajectory when it is within the boundary layer. The surface emissions are specified using an inventory. During the ITOP campaign the EDGAR inventories for NOx and isoprene emissions are used to indicate trajectories that are likely to have been influenced by anthropogenic or biogenic emissions respectively. The emissions from the surface are assumed to be instantaneously mixed throughout the boundary layer column so that they are equivalent to a volume source within the boundary layer. The boundary layer depth (time and space dependent) is obtained from the same numerical weather prediction model as provides the wind and temperature fields (usually the ECMWF model). Chemistry and dilution by mixing is not modelled along the trajectories, so the values assigned to back trajectories are not intended to represent concentrations on the arrival grid. Both NOx and isoprene have short photochemical lifetimes compared with the length of trajectories used.

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains ECMWF Convective precipitation model from a ECMWF Computer.

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains backward trajectories arriving over Europe from the TOMCAT model. “Chemical attributes” are found by interpolating chemical distributions (in space and time) from a global chemical transport model to the origin of each trajectory (using its full length). During the ICARTT campaign the TOMCAT global CTM is being run in near-real time (about 19 hours behind present) driven by wind analyses from the ECMWF. The back trajectories are sufficiently long that a TOMCAT chemical analysis exists even at the origin of forecast trajectories. For example, the longest forecast lead time for the Azores domain is 5 days but the back trajectories are 7 days long so that the TOMCAT fields dating from 2 days before the latest meteorological analysis are used to find the attributes. For the US East Coast domain the back trajectories are shorter (3 days long) but the longest lead time is also 3 days so that the chemical attributes can be calculated as soon as TOMCAT has been brought up to date with the latest ECMWF analyses.

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains ECMWF Boundary layer model data from a ECMWF Computer.

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains NOx outputs from the TOMCAT model. “Chemical attributes” are found by interpolating chemical distributions (in space and time) from a global chemical transport model to the origin of each trajectory (using its full length). During the ICARTT campaign the TOMCAT global CTM is being run in near-real time (about 19 hours behind present) driven by wind analyses from the ECMWF. The back trajectories are sufficiently long that a TOMCAT chemical analysis exists even at the origin of forecast trajectories. For example, the longest forecast lead time for the Azores domain is 5 days but the back trajectories are 7 days long so that the TOMCAT fields dating from 2 days before the latest meteorological analysis are used to find the attributes. For the US East Coast domain the back trajectories are shorter (3 days long) but the longest lead time is also 3 days so that the chemical attributes can be calculated as soon as TOMCAT has been brought up to date with the latest ECMWF analyses.

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains ECMWF High level cloud model from a ECMWF Computer.

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains ECMWF medium level cloud model from a ECMWF Computer.

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains CO ouputs from the TOMCAT model. “Chemical attributes” are found by interpolating chemical distributions (in space and time) from a global chemical transport model to the origin of each trajectory (using its full length). During the ICARTT campaign the TOMCAT global CTM is being run in near-real time (about 19 hours behind present) driven by wind analyses from the ECMWF. The back trajectories are sufficiently long that a TOMCAT chemical analysis exists even at the origin of forecast trajectories. For example, the longest forecast lead time for the Azores domain is 5 days but the back trajectories are 7 days long so that the TOMCAT fields dating from 2 days before the latest meteorological analysis are used to find the attributes. For the US East Coast domain the back trajectories are shorter (3 days long) but the longest lead time is also 3 days so that the chemical attributes can be calculated as soon as TOMCAT has been brought up to date with the latest ECMWF analyses.