From 1 - 10 / 24
  • This dataset contains modelling output from the u-ag477 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period January 2015 with the island orography included. See related dataset for output from a complementary run with a flat orography file for the island for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • This dataset contains modelling output from the u-ab978 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period July 2015 with a flat orography file for the island. See related dataset for output from a complementary run with the island's orography included for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • This dataset contains modelling output from the u-ag706 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period January 2015 with a flat orography file for the island. See related dataset for output from a complementary run with the island's orography included for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • This dataset contains modelling output from the u-ae766 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period June-July 2015 with the island orography included. See related dataset for output from a complementary run with a flat orography file for the island for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • This dataset contains modelling output from the u-af015 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period June-July 2015 with a flat orography file for the island. See related dataset for output from a complementary run with the island's orography included for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • This dataset contains modelling output from the u-ab326 run of a high-resolution (1.5 km horizontal grid, 118 vertical levels up to around 75 km altitude, 30 s timestep) local-area configuration of the Met Office Unified Model run in a box over the island of South Georgia (54S, 36W), as part of the South Georgia Wave Experiment (SG-WEx) project. This run was for the time period July 2015 with the island orography included. See related dataset for output from a complementary run with a flat orography file for the island for the same time period. These were part of a group of 6 model runs for the SG-WEx project. The aim of the modelling runs was to examine gravity wave generation and deep vertical propagation over this mountainous island. Three model time periods are archived within the SG-WEx dataset collection: January 2015, June 2015 and July 2015, each containing two runs, one including the island's orography and one without. Initial and boundary conditions are supplied by a global forecast to ensure that conditions over the island remain realistic. Meteorological fields such as wind, temperature, pressure etc were outputted and saved in hourly steps. These runs also coincided with radiosonde campaigns launched from the island. Technical details regarding the configuration of these runs is described Vosper (2015, doi:10.1002/qj.2566). Further information and science results can be found in Jackson et al. (2018, doi:10.1175/BAMS-D-16-0151.1) and Hindley (2021, doi:10.5194/acp-21-7695-2021). See online resources linked to this record for further details.

  • Cascade was a NERC funded consortium project to study organized convection and scale interactions in the tropical atmosphere using large domain cloud system resolving model simulations. The xfgyaa simulation was made using the Met Office Unified Model (UM) at 12km resolution over the domain 40E-183E, 22S-22N which encompasses the Indian Ocean West Pacific Warm Pool. Cascade Warm Pool simulations coincide with the Year of Tropical Convection. This dataset contains Warm Pool 12km model measurements from xfgyaa run.

  • Cascade was a NERC funded consortium project to study organized convection and scale interactions in the tropical atmosphere using large domain cloud system resolving model simulations. This dataset contains data from the xeydia simulation which ran using the Met Office Unified Model (UM) at 1.5km horizontal resolution over the domain 20W-20E, 5S-28N which encompasses the west african monsoon. Cascade Africa simulations are used to study African Easterly Waves. This dataset contains 1.5km Africa model measurements from xeydia run.

  • Cascade was a NERC funded consortium project to study organized convection and scale interactions in the tropical atmosphere using large domain cloud system resolving model simulations. The xfncl simulation was made using the Met Office Unified Model (UM) at 1.5km resolution over the domain 40E-183E, 22S-22N which encompasses the Indian Ocean West Pacific Warm Pool. Cascade Warm Pool simulations coincide with the Year of Tropical Convection. This dataset contains Warm Pool 1.5km model measurements from xfncl run.

  • Cascade was a NERC funded consortium project to study organized convection and scale interactions in the tropical atmosphere using large domain cloud system resolving model simulations. The xfhfc simulation was made using the Met Office Unified Model (UM) at 4km resolution over the domain 40E-183E, 22S-22N which encompasses the Indian Ocean West Pacific Warm Pool. Cascade Warm Pool simulations coincide with the Year of Tropical Convection. This dataset contains Warm Pool 4km model measurements from xfhfc run.