From 1 - 10 / 55
  • The Greenland Flow Distortion EXperiment investigates the role of Greenland in defining the structure and the predictability of both local and downstream weather systems, through a programme of aircraft-based observation and numerical modelling. The Greenland Flow Distortion Experiment (GFDex) will provide some of the first detailed in situ observations of the intense atmospheric forcing events that are thought to be important in modifying the ocean in this area (but are presently poorly understood): namely tip jets, barrier winds and mesoscale cyclones. The dataset contains Met Office forecast products.

  • The Unified Model is the name given to the suite of atmospheric and oceanic numerical modelling software developed and used at the Met Office. The formulation of the model supports global and regional domains and is applicable to a wide range of temporal and spatial scales that allow it to be used for both numerical weather prediction and climate modelling as well as a variety of related research activities. The Unified Model was introduced into operational service in 1991. Since then, both its formulation and capabilities have been substantially enhanced. Data from the operational NWP (Numerical Weather Prediction) output from the Met Office Unified Model. These data are from both the Global and the North Atlantic European (NAE) part of the model. The NAE model runs on a grid centred around the UK. Analyses and intermediate forecast steps are stored to give an hourly time resolution for 6 hours following each analysis time-step. This archive only holds data to January 2012. A new NWP archive is being populated with data from January 2012. The dataset starts on 23 October 2000, and is ongoing. Around 1.6Gb of data are stored for each day. Analysis fields at 0,6,12,18Z are stored, along with all of the forecast fields from 1-6 hours from each analysis time. Mesoscale : lb[a,f][m,p]yyyymmddhh_STASHCODE_fh.pp Global: ag[a,f][m,p]yyyymmddhh_STASHCODE_fh.pp where yyyymmddhh is the year, month,day and assimilation time, STASHCODE is the STASHMASTER parameter code, fh is the forecast timestep (from the assimilation time), and pp indicates that the files are in binary "pp" format. The directory structure has also been changed to bring it in line with the BADC ECMWF holdings. The mesoscale files and global data are now stored under: /badc/ukmo-um/data/meso/lb/a[m,p] for the analysis fields /badc/ukmo-um/data/meso/lb/f[m,p] for the forecast fields /badc/ukmo-um/data/global/ag/a[m,p] for the analysis fields /badc/ukmo-um/data/global/ag/f[m,p] for the forecast fields Pre-2004 data are still available in the old format under /badc/ukmo-um/data/mesocale/[sm,mm] and /badc/ukmo-um/data/global/[mg,sg], although these will be phased out as the data are archived in the newer format.

  • Data from the operational NWP (Numerical Weather Prediction) output from the global atmospheric part of the Met Office Unified Model. Analyses and first forecast steps are stored to give an hourly time resolution for 6 hours following each analysis time-step. This archive currently holds data from January 2012 onwards but data will be back populated for earlier years.

  • Data from the operational NWP (Numerical Weather Prediction) output from the global atmospheric part of the Met Office Unified Model. Analyses and first forecast steps are stored to give an hourly time resolution for 6 hours following each analysis time-step. This archive currently holds data from January 2012 onwards but data will be back populated for earlier years.

  • Data from the operational NWP (Numerical Weather Prediction) output from the global atmospheric part of the Met Office Unified Model. Analyses and first forecast steps are stored to give an hourly time resolution for 6 hours following each analysis time-step. This archive currently holds data from January 2012 onwards but data will be back populated for earlier years.

  • Data from the operational NWP (Numerical Weather Prediction) output from the global atmospheric part of the Met Office Unified Model. Analyses and first forecast steps are stored to give an hourly time resolution for 6 hours following each analysis time-step. This archive currently holds data from January 2012 onwards but data will be back populated for earlier years.

  • Data from the operational NWP (Numerical Weather Prediction) output from the Variable resolution UK (UKV) part of the Met Office Unified Model. This latest configuration of the UM model has a high resolution inner domain (1.5 km grid boxes) over the area of forecast interest, separated from a coarser grid (4 km) near the boundaries by a variable resolution transition zone. This variable resolution approach allows the boundaries to be moved further away from the region of interest, reducing unwanted boundary effects on the forecasts. The UKV model is kept close to observations using 3D-Var data assimilation every 3 hours. This archive is currently being populated at the BADC.

  • Data from the operational NWP (Numerical Weather Prediction) output from the North Atlantic European (NAE) part of the Met Office Unified Model. The NAE model runs on a grid centred around the UK. Analyses and first forecast steps are stored to give an hourly resolution for 6 hours following each analysis time-step. This archive currently holds data from January 2012 onwards but data will be back populated for earlier years.

  • Cascade was a NERC funded consortium project to study organized convection and scale interactions in the tropical atmosphere using large domain cloud system resolving model simulations. The xfvbb simulation was made using the Met Office Unified Model (UM) at 12km resolution over the domain 40E-183E, 22S-22N which encompasses the Indian Ocean West Pacific Warm Pool. Cascade Warm Pool simulations coincide with the Year of Tropical Convection. This dataset contains Warm Pool 12km model measurements from xfvbb run.

  • Cascade was a NERC funded consortium project to study organized convection and scale interactions in the tropical atmosphere using large domain cloud system resolving model simulations. This dataset contains data from the xeule simulation which ran using the Met Office Unified Model (UM) at 40km horizontal resolution over an idealised equatorial domain of about 8000x4000km. Cascade Idealised simulations are used to study warm pool convection and equatorial waves.