From 1 - 10 / 60
  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset contains infa-red images from MSG satellites over Western Europe. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old.

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset contains visible images from MSG satellites over the UKV domain area. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old.

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset contains infa-red images from MSG satellites over the tropics. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old.

  • Microphysics of Antarctic Clouds (MAC) is a active NERC (Natural Environment Research Council) funded project (NE/K01305X/1). This dataset collection contains NAME dispersion footprints model plots. The largest uncertainties in future climate predictions highlighted by the Intergovernmental Panel on Climate change (IPCC 2007) arise from our lack of knowledge of the interaction of clouds with solar and terrestrial radiation (Dufresene & Bony, 2008). In Antarctica clouds play a major role in determining the continent's ice sheet radiation budget, its surface mass balance and ozone climatology. However in spite of this there are few in situ measurements of cloud properties, aerosol numbers, Cloud Condensation Nuclei (CCN) or Ice Nuclei (IN) with the main focus being on remote sensing data sets (see the review by Bromwich et al 2012). As a result the skill in climate and forecast models at high latitudes is significantly poorer than at mid latitudes. In this project a more representative of the Antarctic continent's coastal region was used. It is in this coastal region that clouds will have the biggest impact on the climate as in the interior of the continent the total cloud cover is less (Lachlan-Cope 2010) and those clouds that exist are more tenuous. To achieve this flights were conducted from the Halley research station.

  • Plots of raw backscatter profiles from the MST Radar Facility's Vaisala LD40 laser ceilometer, Capel Dewi, Wales obtained during the Icelandic Volcano, Eyjafjallajokull, erupting from on 14th April 2010. The volcanic ash cloud produced covered much of Northern Europe for several weeks causing extensive disruption to air travel. The UK and European atmospheric communities had many instruments - both airborne and ground-based, remote sensing and in-situ - taking measurements of the ash cloud throughout this period.

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset contains snow detection cloud mask product images from MSG satellites over western Europe. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old.

  • Study of intercontinental transport of air pollutants by means of coordinated flights over the East coast of North America, the Azores and the West coast of Europe. ITOP was a component of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), an international initiative which coordinated the efforts of various American and European groups who developed plans for field campaigns in the summer of 2004, with the aim of improving our understanding of the factors determining air quality over the two continents and over remote regions of the North Atlantic. This dataset includes ECMWF boundary layer, convective precipitation and cloud level forecast model output.

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset contains visible images from MSG satellites over the full disc. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old.

  • UTLS-OZONE was a NERC directed mode programme funding projects to study the upper troposphere and lower stratosphere. The particular emphasis was on the processes determining the distribution of ozone and any subsequent climate impacts. Two UTLS Ozone projects were based on airborne campaigns using the FAAM aircraft, namely ITOP-UK and CIRRUS. This dataset contains ECMWF meteorological images.

  • The Cloud and Water Vapour Experiment (CWAVE) was a measurement campaign at the CCLRC-Chilbolton Observatory; it was supporting associated with two EC FP5 projects, CLOUDMAP2 and CLOUDNET. A wide range of satellite and ground based instruments measured a variety of atmospheric properties ranging from cloud parameters to water vapour. In addition, the measurements coincided with the results from a reduced resolution Unified Model (UM) run by the Met Office.