From 1 - 10 / 60
  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset contains visible images from MSG satellites over the full disc. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old. The geographic extent for images within this datasets is available via the linked documentation 'MSG satellite imagery product geographic area details'. Each MSG imagery product area can be referenced from the third and fourth character of the image product name giving in the filename. E.g. for EEAO11 the corresponding geographic details can be found under the entry for area code 'AO' (i.e West Africa).

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset contains visible images from MSG satellites over the full disc. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old. The geographic extent for images within this datasets is available via the linked documentation 'MSG satellite imagery product geographic area details'. Each MSG imagery product area can be referenced from the third and fourth character of the image product name giving in the filename. E.g. for EEAO11 the corresponding geographic details can be found under the entry for area code 'AO' (i.e West Africa).

  • UTLS-OZONE was a NERC directed mode programme funding projects to study the upper troposphere and lower stratosphere. The particular emphasis was on the processes determining the distribution of ozone and any subsequent climate impacts. Two UTLS Ozone projects were based on airborne campaigns using the FAAM aircraft, namely ITOP-UK and CIRRUS. This dataset contains ECMWF meteorological images.

  • Vegetation and meteorological observations (snow and radiation) were collected by various ground instruments in an area of forest near Abisko (Sweden) and Sodankylä (Finland) during measurement campaigns in March 2011 and March 2012. This dataset contains the hemispherical photography data collected at Sodankyla site in March 2011. Upward-looking hemispherical photographs were taken at every radiometer position using a Nikon Coolpix 4300 digital camera with a Nikon FC-E8 fisheye lens. The camera was mounted on a small tripod with the lens approximately 20 cm above the snow surface. In each case, the camera was levelled and rotated such that magnetic north is at the top of the photograph. This was a NERC funded project.

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset contains infa-red images from MSG satellites over Western Europe. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old. The geographic extent for images within this datasets is available via the linked documentation 'MSG satellite imagery product geographic area details'. Each MSG imagery product area can be referenced from the third and fourth character of the image product name giving in the filename. E.g. for EEAO11 the corresponding geographic details can be found under the entry for area code 'AO' (i.e West Africa).

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains NOx outputs from the TOMCAT model. “Chemical attributes” are found by interpolating chemical distributions (in space and time) from a global chemical transport model to the origin of each trajectory (using its full length). During the ICARTT campaign the TOMCAT global CTM is being run in near-real time (about 19 hours behind present) driven by wind analyses from the ECMWF. The back trajectories are sufficiently long that a TOMCAT chemical analysis exists even at the origin of forecast trajectories. For example, the longest forecast lead time for the Azores domain is 5 days but the back trajectories are 7 days long so that the TOMCAT fields dating from 2 days before the latest meteorological analysis are used to find the attributes. For the US East Coast domain the back trajectories are shorter (3 days long) but the longest lead time is also 3 days so that the chemical attributes can be calculated as soon as TOMCAT has been brought up to date with the latest ECMWF analyses.

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset water vapour images from MSG satellites over the tropics. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old. The geographic extent for images within this datasets is available via the linked documentation 'MSG satellite imagery product geographic area details'. Each MSG imagery product area can be referenced from the third and fourth character of the image product name giving in the filename. E.g. for EEAO11 the corresponding geographic details can be found under the entry for area code 'AO' (i.e West Africa).

  • The Meteosat Second Generation (MSG) satellites, operated by EUMETSAT (The European Organisation for the Exploitation of Meteorological Satellites), provide almost continuous imagery to meteorologists and researchers in Europe and around the world. These include visible, infra-red, water vapour, High Resolution Visible (HRV) images and derived cloud top height, cloud top temperature, fog, snow detection and volcanic ash products. These images are available for a range of geographical areas. This dataset visible images from MSG satellites over Western Europe. Imagery available from March 2005 onwards at a frequency of 15 minutes (some are hourly) and are at least 24 hours old. The geographic extent for images within this datasets is available via the linked documentation 'MSG satellite imagery product geographic area details'. Each MSG imagery product area can be referenced from the third and fourth character of the image product name giving in the filename. E.g. for EEAO11 the corresponding geographic details can be found under the entry for area code 'AO' (i.e West Africa).

  • Study of intercontinental transport of air pollutants by means of coordinated flights over the East coast of North America, the Azores and the West coast of Europe. ITOP was a component of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), an international initiative which coordinated the efforts of various American and European groups who developed plans for field campaigns in the summer of 2004, with the aim of improving our understanding of the factors determining air quality over the two continents and over remote regions of the North Atlantic. This dataset includes ECMWF boundary layer, convective precipitation and cloud level forecast model output.

  • The Aerosol Direct Radiative Impact Experiment (ADRIEX) was a joint UK Met Office/Natural Environment Research Council (NERC)/UK Royal Society/University of Oslo project aiming at improving our understanding of the radiative effects of anthropogenic aerosol and gases (ozone and methane) in the troposphere. This dataset contains ECMWF Convective precipitation model from a ECMWF Computer.