Contact for the resource

University of Minnesota

3 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
Scale
Resolution
From 1 - 3 / 3
  • The dataset contains annual global plant respiration (and related diagnostics, such as Net Primary Productivity, Gross Primary Productivity and soil respiration), applicable for pre-industrial times (taken as year 1860) through to the end of the 21st Century (year 2100). The spatial resolution of the data is 2.5 degrees latitude x 3.75 degrees longitude. These diagnostics are outputs from the Joint UK Land Environment Simulator (JULES land surface model) under four different approaches to calcluate leaf respiration. Each of four sets contains a total of 34 runs, each driven by a different CMIP5 model climate pattern, using the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN) system. These are for a "business-as-usual" approach to fossil fuel usage, as the Representative Concentration Pathway scenario RCP8.5. These simulations form the basis for new research paper by Huntingford et al (2017, under review). Full details about this dataset can be found at https://doi.org/10.5285/24489399-5c99-4050-93ee-58ac4b09341a

  • Projections of global changes in water scarcity with the current extent of maize, rice, wheat, vegetables, pulses and fruit production commodities were combined to identify the potential country level vulnerabilities of cropland land to water scarcity in 2050. The data relate to an analysis of the impact changes in water availability will have on maize, rice, wheat, vegetables, pulses and fruit production commodities availability in 2050. Full details about this dataset can be found at https://doi.org/10.5285/84b3b580-acbf-487d-bf44-c21bc2cf12ee

  • This dataset contains the percentage of the total pasture area in each country classified as vulnerable to water scarcity (annual run-off is declining and the water shed is defined as water scarce in 2050). Projections of global changes in water scarcity with the current extent of pasture land were combined to identify the potential country level vulnerabilities of pasture land to water scarcity in 2050. The data relate to an analysis of the impact changes in water availability will have on pasture availability in 2050. Full details about this dataset can be found at https://doi.org/10.5285/ec5cc84e-a8da-4ff8-80d4-26fca1a31e1f