Sixth Assessment Report
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
-
Data for Figure 3.2 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.2 shows changes in surface temperature for different paleoclimates. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has three subpanels, the data provided for all panels in subdirectories named panel_a, panel_b, panel_c --------------------------------------------------- List of data provided --------------------------------------------------- For panel (a): - PMIP3 global temperature anomalies over continents and oceans reconstruction sites - PMIP4 CMIP6 global temperature anomalies over continents and oceans reconstruction sites - PMIP4 non-CMIP6 global temperature anomalies over continents and oceans reconstruction sites - Tierney 2020 reconstructions of marine temperature - Cleator 2020 reconstructions of continental temperature For panel (b): - CMIP5 temperature data for paleoclimate periods - CMIP6 temperature data for paleoclimate periods - non-CMIP temperature data for paleoclimate periods - Instrumental observational and observations from reconstructions For panel (c): - Volcanic forcing from TS17, CU12, GRA08 - CMIP6 GMST anomaly with respect to 1850-1900 modelled with TS17 volcanic forcing - CMIP5 GMST anomaly with respect to 1850-1900 modelled with CU12 volcanic forcing - CMIP5 GMST anomaly with respect to 1850-1900 modelled with GRA08 volcanic forcing --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- - panel_a/temperature_anomalies_scatter_points.csv relates to the scatter points and their standard deviation for panel (a) - For panel (b) the datasets are stored as following panel_b/temperature_{color}_{marker}_{period}_{model_group}_{additional_info}.csv and relates to the scatter points for panel (b). - For panel (c) the data is stored in panel_c/gmst_changes_paleo_volcanic_forcings.csv and relates to red, green, blue and black lines on the panel as well as grey shadings. Additional information about data provided in relation to figure in files headers. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. PMIP4 is the Paleoclimate Modelling Intercomparison Project phase 4 PMIP3 is the Paleoclimate Modelling Intercomparison Project phase 3 --------------------------------------------------- Temporal Range of Paleoclimate Data --------------------------------------------------- This dataset covers a paleoclimate timespan from 3.3Ma to 6ka (3.3 million years ago to 6 thousand years ago). --------------------------------------------------- Notes on reproducing the figure from the provided data. --------------------------------------------------- For panel (a) the error bar should be plotted as anomalies from columns 2/4 +/- standard deviation. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo.
-
Data for the Summary for Policymakers (SPM) of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). When using the datasets from this collection please use the citation indicated on each individual specific dataset, rather than the citation for the entire collection. Figure datasets related to this collection: - data for Figure SPM.1 - data for Figure SPM.2 - data for Figure SPM.3 - data for Figure SPM.4 - data for Figure SPM.5 - data for Figure SPM.6 - data for Figure SPM.7 - data for Figure SPM.8 - data for Figure SPM.9 - data for Figure SPM.10
-
Data for Figure 3.21 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.21 shows the seasonal evolution of observed and simulated Arctic and Antarctic sea ice area (SIA) over 1979-2017. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has several subplots, but they are unidentified, so the data is stored in the parent directory. --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains Sea Ice Area anomalies over 1979-2017 relative to the 1979-2000 means from: - Observations (OSISAF, NASA Team, and Bootstrap) - Historical simulations from CMIP5 and CMIP6 multi-model means - Natural only simulations from CMIP5 and CMIP6 multi-model means --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- - *_arctic_* files are used for the plots on the left side of the figure - *_antarctic_* files are used for the plots on the right side of the figure - *_OBS_NASATeam* files are used for the first row of the plot - *_OBS_Bootstrap* are used for the second row of the plot - *_OBS_OSISAF* are used for the third row of the plot - *_ALL_CMIP5* are used in the fourth row of the plot - *_ALL_CMIP6* are used in the fifth row of the plot - *_NAT_CMIP5* are used in the sixth row of the plot - *_NAT_CMIP6* are used in the seventh row of the plot --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- The significance are for the grey dots, it's nan or 1 values. The data has to be overplotted to colored squares. Grey dots indicate multi-model mean anomalies stronger than inter-model spread (beyond ± 1 standard deviation). The coordinates of the data are indices, but in global attributes 'comments' of each file there are relations of indices to months, since months are the y coordinate. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo.
-
Data for Figure SPM.3 from the Summary for Policymakers (SPM) of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure SPM.3 shows the synthesis of assessed observed and attributable regional changes in hot extremes, heavy precipitation and agricultural and ecological droughts and confidence in human contribution to the observed changes in the world’s regions. --------------------------------------------------- How to cite this dataset --------------------------------------------------- IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3−32, doi:10.1017/9781009157896.001. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has three panels, with data provided for all panels in subdirectories named panel_a, panel_b and panel_c. --------------------------------------------------- List of data provided --------------------------------------------------- Panel a: Synthesis of assessment of observed change in hot extremes and confidence in human contribution to the observed changes in the AR6 land-regions, excluding Antarctica. Panel b: Synthesis of assessment of observed change in heavy precipitation and confidence in human contribution to the observed changes in the AR6 land-regions, excluding Antarctica. Panel c: Synthesis of assessment of observed change in agricultural and ecological drought and confidence in human contribution to the observed changes in the AR6 land-regions, excluding Antarctica. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- · Data file: panel_a/SPM3_panel_a.csv (AR6 world regions, observed change in hot extremes, confidence in human contribution); middle entry relates to the colour of the map, showing [increase] (red), [decrease](blue),[low agreement in type of change](white/grey),[limited data and/or literature](grey) . · Data file: panel_b/SPM3_panel_b.csv (AR6 world regions, observed change in heavy precipitation, confidence in human contribution); middle entry relates to the colour of the map, showing [increase] (green), [decrease](yellow),[low agreement in type of change](white/grey),[limited data and/or literature](grey) . · Data file: panel_c/SPM3_panel_c.csv (AR6 world regions, observed change in agricultural and ecological drought, confidence in human contribution); middle entry relates to the colour of the map, showing [increase] (yellow), [decrease](green),[low agreement in type of change](white/grey),[limited data and/or literature](grey) --------------------------------------------------- Sources of additional information --------------------------------------------------- The data in the files is an assessment of section 11.9 in chapter 11 that is provided in the second first two columns of the tables in that section.
-
Data for Figure 3.40 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.40 shows the observed and simulated Atlantic Multidecadal Variability (AMV). --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has six panels. Files are not separated according to the panels. --------------------------------------------------- List of data provided --------------------------------------------------- amv.obs.nc contains - Observed SST anomalies associated with the AMV pattern - Observed AMV index time series (unfiltered) - Observed AMV index time series (low-pass filtered) - Taylor statistics of the observed AMV patterns amv.hist.cmip6.nc contains - Statistical significance of the observed SST anomalies associated with the AMV pattern - Simulated SST anomalies associated with the AMV pattern - Simulated AMV index time series (unfiltered) - Simulated AMV index time series (low-pass filtered) - Taylor statistics of the simulated AMV patterns based on CMIP6 historical simulations. amv.hist.cmip5.nc contains - Simulated SST anomalies associated with the AMV pattern - Simulated AMV index time series (unfiltered) - Simulated AMV index time series (low-pass filtered) - Taylor statistics of the simulated AMV patterns based on CMIP5 historical simulations. amv.piControl.cmip6.nc contains - Simulated SST anomalies associated with the AMV pattern - Simulated AMV index time series (unfiltered) - Simulated AMV index time series (low-pass filtered) - Taylor statistics of the simulated AMV patterns based on CMIP6 piControl simulations. amv.piControl.cmip5.nc contains - Simulated SST anomalies associated with the AMV pattern - Simulated AMV index time series (unfiltered) - Simulated AMV index time series (low-pass filtered) - Taylor statistics of the simulated AMV patterns based on CMIP5 piControl simulations. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - amv_pattern_obs_ref in amv.obs.nc: shading - amv_pattern_obs_signif (dataset = 1) in amv.obs.nc: cross markers Panel b: - Multimodel ensemble mean of amv_pattern in amv.hist.cmip6.nc: shading, with their sign agreement for hatching Panel c: - tay_stats (stat = 0, 1) in amv.obs.nc: black dots - tay_stats (stat = 0, 1) in amv.hist.cmip6.nc: red crosses, and their multimodel ensemble mean for the red dot - tay_stats (stat = 0, 1) in amv.hist.cmip5.nc: blue crosses, and their multimodel ensemble mean for the blue dot Panel d: - Lag-1 autocorrelation of amv_timeseries_raw in amv.obs.nc: black horizontal lines in left . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of amv_timeseries_raw in amv.piControl.cmip5.nc: blue open box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of amv_timeseries_raw in amv.piControl.cmip6.nc: red open box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of amv_timeseries_raw in amv.hist.cmip5.nc: blue filled box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of amv_timeseries_raw in amv.hist.cmip6.nc: red filled box-whisker in the left - Lag-10 autocorrelation of amv_timeseries in amv.obs.nc: black horizontal lines in right . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of amv_timeseries in amv.piControl.cmip5.nc: blue open box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of amv_timeseries in amv.piControl.cmip6.nc: red open box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of amv_timeseries in amv.hist.cmip5.nc: blue filled box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of amv_timeseries in amv.hist.cmip6.nc: red filled box-whisker in the right Panel e: - Standard deviation of amv_timeseries_raw in amv.obs.nc: black horizontal lines in left . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries_raw in amv.piControl.cmip5.nc: blue open box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries_raw in amv.piControl.cmip6.nc: red open box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries_raw in amv.hist.cmip5.nc: blue filled box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries_raw in amv.hist.cmip6.nc: red filled box-whisker in the left - Standard deviation of amv_timeseries in amv.obs.nc: black horizontal lines in right . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries in amv.piControl.cmip5.nc: blue open box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries in amv.piControl.cmip6.nc: red open box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries in amv.hist.cmip5.nc: blue filled box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries in amv.hist.cmip6.nc: red filled box-whisker in the right Panel f: - amv_timeseries in amv.obs.nc: black curves . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - amv_timeseries in amv.hist.cmip6.nc: 5th-95th percentiles in red shading, multimodel ensemble mean and its 5-95% confidence interval for red curves - amv_timeseries in amv.hist.cmip5.nc: 5th-95th percentiles in blue shading, multimodel ensemble mean for blue curve CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. SST stands for Sea Surface Temperature. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Multimodel ensemble means and percentiles of historical simulations of CMIP5 and CMIP6 are calculated after weighting individual members with the inverse of the ensemble size of the same model. ensemble_assign in each file provides the model number to which each ensemble member belongs. This weighting does not apply to the sign agreement calculation. piControl simulations from CMIP5 and CMIP6 consist of a single member from each model, so the weighting is not applied. Multimodel ensemble means of the pattern correlation in Taylor statistics in (c) and the autocorrelation of the index in (d) are calculated via Fisher z-transformation and back transformation. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo - Link to the figure on the IPCC AR6 website
-
Data for Figure 3.22 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.22 shows time series of Northern Hemisphere March-April mean snow cover extent (SCE) from observations, CMIP5 and CMIP6 simulations. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- There are technically two panels top and bottom (CMIP5 and CMIP6), however, the data is stored in the parent directory. --------------------------------------------------- List of data provided --------------------------------------------------- The data is for the Northern Hemisphere snow cover extent anomalies (SCEA) from models and observations: - The SCEA observational data from GLDAS-NOAH (1948-2012), Brown-NOAA (1923-2017), Mudryk et al 2020 (1968-2017) - The SCEA modelled by CMIP5 historical-rcp45 experiment (1923-2017) - The SCEA modelled by CMIP5 historicalNat experiment (1923-2012) - The SCEA modelled by CMIP6 historical-ssp245 experiment (1923-2017) - The SCEA modelled by CMIP6 hist-nat experiment (1923-2017) - The SCEA modelled by CMIP5 and CMIP6 piControl experiments --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- snow_cover_extent_cmip5_obs.csv is the data for the green and brown lines and shadings in the upper panel and grey lines (1923-2017) snow_cover_extent_cmip6_obs.csv is the data for the green and brown lines and shadings in the lower panel and grey lines (1923-2017) snow_cover_extent_piControl.csv for the blue error bars in the both panels Additional details of data provided in relation to figure in the file header (BADC-CSV file) CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo.
-
Data for Figure 3.39 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.39 shows the observed and simulated Pacific Decadal Variability (PDV). --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has six panels. Files are not separated according to the panels. --------------------------------------------------- List of data provided --------------------------------------------------- pdv.obs.nc contains - Observed SST anomalies associated with the PDV pattern - Observed PDV index time series (unfiltered) - Observed PDV index time series (low-pass filtered) - Taylor statistics of the observed PDV patterns - Statistical significance of the observed SST anomalies associated with the PDV pattern pdv.hist.cmip6.nc contains - Simulated SST anomalies associated with the PDV pattern - Simulated PDV index time series (unfiltered) - Simulated PDV index time series (low-pass filtered) - Taylor statistics of the simulated PDV patterns based on CMIP6 historical simulations. pdv.hist.cmip5.nc contains - Simulated SST anomalies associated with the PDV pattern - Simulated PDV index time series (unfiltered) - Simulated PDV index time series (low-pass filtered) - Taylor statistics of the simulated PDV patterns based on CMIP5 historical simulations. pdv.piControl.cmip6.nc contains - Simulated SST anomalies associated with the PDV pattern - Simulated PDV index time series (unfiltered) - Simulated PDV index time series (low-pass filtered) - Taylor statistics of the simulated PDV patterns based on CMIP6 piControl simulations. pdv.piControl.cmip5.nc contains - Simulated SST anomalies associated with the PDV pattern - Simulated PDV index time series (unfiltered) - Simulated PDV index time series (low-pass filtered) - Taylor statistics of the simulated PDV patterns based on CMIP5 piControl simulations. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - ipo_pattern_obs_ref in pdv.obs.nc: shading - ipo_pattern_obs_signif (dataset = 1) in pdv.obs.nc: cross markers Panel b: - Multimodel ensemble mean of ipo_model_pattern in pdv.hist.cmip6.nc: shading, with their sign agreement for hatching Panel c: - tay_stats (stat = 0, 1) in pdv.obs.nc: black dots - tay_stats (stat = 0, 1) in pdv.hist.cmip6.nc: red crosses, and their multimodel ensemble mean for the red dot - tay_stats (stat = 0, 1) in pdv.hist.cmip5.nc: blue crosses, and their multimodel ensemble mean for the blue dot Panel d: - Lag-1 autocorrelation of tpi in pdv.obs.nc: black horizontal lines in left . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of tpi in pdv.piControl.cmip5.nc: blue open box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of tpi in pdv.piControl.cmip6.nc: red open box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of tpi in pdv.hist.cmip5.nc: blue filled box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of tpi in pdv.hist.cmip6.nc: red filled box-whisker in the left - Lag-10 autocorrelation of tpi_lp in pdv.obs.nc: black horizontal lines in right . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of tpi_lp in pdv.piControl.cmip5.nc: blue open box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of tpi_lp in pdv.piControl.cmip6.nc: red open box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of tpi_lp in pdv.hist.cmip5.nc: blue filled box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of tpi_lp in pdv.hist.cmip6.nc: red filled box-whisker in the right Panel e: - Standard deviation of tpi in pdv.obs.nc: black horizontal lines in left . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of standard deviation of tpi in pdv.piControl.cmip5.nc: blue open box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of tpi in pdv.piControl.cmip6.nc: red open box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of tpi in pdv.hist.cmip5.nc: blue filled box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of tpi in pdv.hist.cmip6.nc: red filled box-whisker in the left - Standard deviation of tpi_lp in pdv.obs.nc: black horizontal lines in right . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of standard deviation of tpi_lp in pdv.piControl.cmip5.nc: blue open box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of tpi_lp in pdv.piControl.cmip6.nc: red open box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of tpi_lp in pdv.hist.cmip5.nc: blue filled box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of tpi_lp in pdv.hist.cmip6.nc: red filled box-whisker in the right Panel f: - tpi_lp in pdv.obs.nc: black curves . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - tpi_lp in pdv.hist.cmip6.nc: 5th-95th percentiles in red shading, multimodel ensemble mean and its 5-95% confidence interval for red curves - tpi_lp in pdv.hist.cmip5.nc: 5th-95th percentiles in blue shading, multimodel ensemble mean for blue curve CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. SST stands for Sea Surface Temperature. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Multimodel ensemble means and percentiles of historical simulations of CMIP5 and CMIP6 are calculated after weighting individual members with the inverse of the ensemble size of the same model. ensemble_assign in each file provides the model number to which each ensemble member belongs. This weighting does not apply to the sign agreement calculation. piControl simulations from CMIP5 and CMIP6 consist of a single member from each model, so the weighting is not applied. Multimodel ensemble means of the pattern correlation in Taylor statistics in (c) and the autocorrelation of the index in (d) are calculated via Fisher z-transformation and back transformation. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo - Link to the figure on the IPCC AR6 website
-
Data for Cross-Chapter Box 3.1, Figure 1 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Cross-Chapter Box 3.1, Figure 1 shows 15-year trends of surface global warming for 1998-2012 and 2012-2026. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has four panels, with data provided for panels a and b in a subdirectory named panel_ab, and for panels c and d in subdirectories named panel_c and panel_d respectively. --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains: - Observed and modelled global annual mean surface temperature and surface air temperature trends for 1998-2012 - Modelled global annual mean surface air temperature trends for 2012-2026 - Observed annual mean surface temperature trends for 1998-2012 - Composite of modelled annual mean surface air temperature trends for 1998-2012 --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - gmst_trend_1998-2012 in panel_ab/GMST_trend.csv; HadCRUT5 for histogram, ensemble mean of HadCRUT5 and other observations for open triangles at the top, and multimodel ensemble means of CMIP5 and CMIP6 for open diamonds at the top - gsat_trend_1998-2012 in panel_ab/GSAT_trend.csv; CMIP5 and CMIP6 ensembles for histograms, ERA5 for the top filled triangle, and multimodel ensemble means of CMIP5 and CMIP6 for filled diamonds at the top Panel b: - gmst_trend_2012-2026 in panel_ab/GMST_trend.csv; multimodel ensemble means of CMIP5 and CMIP6 for open diamonds at the top - gsat_trend_2012-2026 in panel_ab/GSAT_trend.csv; CMIP5 and CMIP6 ensembles for histograms, and multimodel ensemble means of CMIP5 and CMIP6 for filled diamonds at the top Panel c: - tas in panel_c/TrendPattern_HadCRUT5_mean.nc; shading, with the sig attribute for cross markers Panel d: - tas in panel_d/TrendPattern_composite.nc: shading CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. HadCRUT5 is a gridded dataset of global historical near-surface air temperature anomalies since the year 1850. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Multimodel ensemble means and histograms are calculated after weighting each ensemble member with the inverse of the ensemble size of the same model. The values for panels c and d are stored with the K/year unit but scaled to the K/decade, therefore they need to be multiplied by a factor of 10 in order to be consistent with the plotted values. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo.
-
Data for Figure 5.33 from Chapter 5 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 5.33 shows carbon sink response in a scenario with net carbon dioxide (CO2) removal from the atmosphere. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Canadell, J.G., P.M.S. Monteiro, M.H. Costa, L. Cotrim da Cunha, P.M. Cox, A.V. Eliseev, S. Henson, M. Ishii, S. Jaccard, C. Koven, A. Lohila, P.K. Patra, S. Piao, J. Rogelj, S. Syampungani, S. Zaehle, and K. Zickfeld, 2021: Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 673–816, doi:10.1017/9781009157896.007. --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains data for 50-year periods during 2000-2300 for: - Atmospheric CO2 concentration - Net CO2 emissions (accumulated over 50 year periods) - Net land flux (accumulated over 50 year periods) - Net ocean flux (accumulated over 50 year periods) --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Data file: Data_Figure_5_33.csv: - row 1: x-axis values. - row 2: light blue bars. - row 3: orange bars. - row 4: green bars. - row 5: blue bars - row 6: relates with the values written in black over the corresponding arrows (row 2 values plus values written in black) - row 7: Standard deviation over orange bars. - row 8: Standard deviation over green bars. - row 9: Standard deviation over blue bars. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- This figure was created in Excel and the error bars (standard deviation) were added in Adobe Illustrator. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the figure on the IPCC AR6 website - Link to the report component containing the figure (Chapter 5) - Link to the Supplementary Material for Chapter 5, which contains details on the input data used in Table 5.SM.6
-
Data for Figure 3.38 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.38 shows model evaluation of ENSO teleconnection for 2m-temperature and precipitation in boreal winter (December-January-February). --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- Data provided for all panels in one single directory --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains observed global patterns for: - temperature from the Berkeley Earth dataset over land - temperature from ERSSTv5 over ocean - precipitation from GPCC over land (shading, mm day–1) - precipitation from GPCP worldwide (contours, period: 1979-2014) and distributions of regression coefficients in IPCC regions for: - temperature - precipitation --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- maps: - reg_tas_NINO34_BEST_ERSSTv5_1901_2018_DJF.nc (var = 'rc', upper map over land) - reg_sst_NINO34_ERSSTv5_ERSSTv5_1901_2018_DJF.nc (var = 'rc', upper map over ocean) - reg_precip_NINO34_GPCP_ERSST5_1979_2018_DJF.nc (var = 'rc', lower map, contours) - reg_pr_NINO34_GPCC_ERSSTv5_1901_2016_DJF.nc (var = 'rc', lower map, shading) histograms: - tas_enso_regression_pdf_v4_no_cosweight_DJF.nc . upper grey histograms: var = 'region_pdfx_hist' and 'region_pdfy_hist' . MME (black line): var = 'region_ave_hist' . Observations (blue lines): var = 'region_obs' - tas_amip_hist_enso_regression_pdf_v4_no_cosweight_DJF.nc (orange dashed line): var = 'region_ave_amip_hist' => Fields correspond to regions numbers with labels in the plot, namely for temperature: 'EAU/RFE/RAR/NWN/NCA/ENA/NSA/MED/NWS/ESAF' (see variable region_info with attributes making the association between the region index and the acronym/name). - pr_enso_regression_pdf_v4_no_cosweight_DJF.nc . lower grey histograms: var = 'region_pdfx_hist' and 'region_pdfy_hist' . MME (black line): var = 'region_ave_hist' . Observations (blue lines): var = 'region_obs' - pr_amip_hist_enso_regression_pdf_v4_no_cosweight_DJF.nc (orange dahsed line): var = 'region_ave_amip_hist' => Fields correspond to regions numbers with labels in the plot, namely for precipitation: 'EAS/SEA/EAU/WNA/NCA/SES/NSA/ESAF/SEAF/MED' (see variable info_region with attributes making the association between the region index and the acronym/name). ENSO is the El Niño Southern Oscillation. GPCC is the Global Precipitation Climatology Centre. GPCP is the Global Precipitation Climatology Project. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Data provided in reg_pr_NINO34_GPCC_ERSSTv5_1901_2016_DJF.nc are in mm/month. Values should be divided by 30 for plotting in mm/day. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the figure on the IPCC AR6 website