From 1 - 10 / 22
  • Microclimate data collected hourly at Anchorage Island, for 15 climatic variables via automatic data loggers, from 2001-2009. Data is not available across the entire temporal range for all variables. NERC funded under the British Antarctic Survey National Capability programme, Polar Science for Planet Earth.

  • Microclimate data collected hourly at Coal Nunatak, for 10 climatic variables via automatic data loggers, 2006-2019. Data is not available across the entire temporal range for all variables. NERC funded under the British Antarctic Survey National Capability programme, Polar Science for Planet Earth. **Please be advised to use Version 2.0 of this dataset, which has undergone additional quality control, found here: https://data.bas.ac.uk/metadata.php?id=GB/NERC/BAS/PDC/01598**

  • Temperature, pressure, wind speed and wind direction from two automatic weather stations on the Brunt Ice Shelf that operated during 2015.

  • The dataset contains chronological and biomarker compound and brGDGT (branched Glyceryl Dialkyl Glyceryl Tetraether) mean summer temperature (MSAT) data for the last c. 6,000 years from sediments extracted from Fan Lake on Annenkov Island (near South Georgia) and Yanou Lake, King George Island, South Shetland Islands. Temperature was reconstructed using the Pearson et al. (2011) global calibration and the Foster et al. (2016) Antarctic calibration. For the latter, we studied 32 lakes from Antarctica, the sub-Antarctic Islands and Southern Chile to: 1) quantify their GDGT composition and investigate the environmental controls on GDGT composition; and 2) develop a GDGT-temperature calibration model for inferring past temperatures from Antarctic and sub-Antarctic lakes. The downcore temperature reconstruction data produced using the new Antarctic brGDGT-temperature calibration were tested on Fan Lake and Yanou Lake to provide a proof of concept for the new calibration model in the Southern Hemisphere. This study is an output of the British Antarctic Survey (BAS) Natural Environment Research Council (NERC) funded Science Program, and was funded by NERC Studentship NE/J500173/1 to LF (BAS and Newcastle University) with additional support from: the European Commission under the 7th Framework Programme through the Action - IMCONet (FP7 IRSES, action No.319718 and the ESF-funded IMCOAST project AP6 to SJR, both coordinated by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany). Additional funding from the Natural Environmental Research Council (NERC-CASS), and the German Research Foundation (DFG project no. BR 775/25-1). Logistic support from the NERC-British Antarctic Survey (BAS), HMS Endurance and 892 Naval Air Squadron, the Alfred Wegner Institute (AWI) and the Instituto Antartico Argentino (IAA).

  • Weather Research and Forecasting (WRF) model output for Larsen Ice Shelf, run at 1km resolution. Modelling was carried out to support the Orographic Flows and the Climate of the Antarctic Peninsula (OFCAP) project during the 2010-2011 field season.

  • READER (REference Antarctic Data for Environmental Research) is a project of the Scientific Committee on Antarctic Research (SCAR http://www.scar.org/) and has the goal of creating a high quality, long term dataset of mean surface and upper air meteorological measurements from in-situ Antarctic observing systems. These data will be of value in climate research and climate change investigations. The primary sources of data are the Antarctic research stations and automatic weather stations. Data from mobile platforms, such as ships and drifting buoys are not being collected since our goal is to derive time series of data at fixed locations. Surface and upper air data are being collected and the principal statistics derived are monthly and annual means. Daily data will not be provided in order to keep the data set to a manageable size. With the resources available to the project, it is clearly not possible to collect all the information that could be required by the whole range of investigations into change in the Antarctic. Instead a key set of meteorological variables (surface temperature, mean sea level pressure and surface wind speed, and upper air temperature, geopotential height and wind speed at standard levels) are being assembled and a definitive set of measurements presented for use by researchers. A lot of stations have been operated in the Antarctic over the years; many for quite short periods. However, our goal here is to provide information on the long time series that can provide insight into change in the Antarctic. So to be included, the record from a station must extend for 25 years, although not necessarily in a continuous period, or be currently in operation and have operated for the last 10 years. In READER we have chosen to use only data from year-round stations.

  • Precipitation and near-surface temperature data from the Coupled Model Intercomparison Project phase 5 (CMIP5 models) are statistically downscaled to create these gridded datasets over the Rio Santa River Basin (in the Cordillera Blanca; d02) and the Vilcanota-Urubamba region (d03) at 4 km horizontal resolution, from 2019-2100. The bias-corrected WRF data found in the related dataset are used as the observational truth for the historical period 1980-2018, and the data are downscaled using an empirical quantile mapping technique. Two representative concentration pathways (RCP) have been downscaled, RCP 4.5 and RCP 8.5, from 30 CMIP5 models. The daily total precipitation and daily minimum and maximum temperature at 2 m are downscaled, and the daily average and monthly average temperatures are calculated using the hourly temperature (not archived due to space constraints). The potential evapotranspiration is estimated from the downscaled precipitation and temperature data, using the Hargreaves equation. These data were corrected as part of the PEGASUS (Producing EnerGy and preventing hAzards from SUrface water Storage in Peru) and Peru GROWS (Peruvian Glacier Retreat and its Impact on Water Security) projects. The datasets were created to assess future climate in the Peruvian Andes, as a basis to determine future climate in the region, and as an input for glaciological and hydrological models. The data were created on the JASMIN supercomputer. The creation of this data was conducted under the Peru GROWS and PEGASUS projects, which were both funded by NERC (grants NE/S013296/1 and NE/S013318/1, respectively) and CONCYTEC through the Newton-Paulet Fund. The Peruvian part of the Peru GROWS project was conducted within the framework of the call E031-2018-01-NERC "Glacier Research Circles", through its executing unit FONDECYT (Contract No. 08-2019-FONDECYT).

  • Microclimate data collected hourly at Jane Col, for 12 climatic variables via automatic data loggers, 2007-2016. Data is not available across the entire temporal range for all variables. NERC funded under the British Antarctic Survey National Capability programme, Polar Science for Planet Earth. This is an updated version of this dataset. The previous dataset can be viewed here for reference: https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01304. There have been changes to the quality control carried out in the updated data.

  • The data consists of 30 minute observations recorded by an automatic weather station (iWS 18) in Cabinet Inlet on Larsen C Ice Shelf on the Antarctic Peninsula. The iWS consists of a custom-built weather station unit, assembled at the Institute of Marine and Atmospheric research Utrecht (IMAU). There are sensors for air temperature, surface air pressure, relative humidity, as well as a GPS, an acoustic snow height sensor, an ARGOS communication antenna, and three Lithium batteries that fuel the unit when solar radiation is absent. The unit is complemented by a propeller-vane Young anemometer measuring wind direction and speed. Additionally, all radiation fluxes are measured with a Kipp and Zonen CNR4 radiometer. This dataset runs from 25 November 2014 to 13 November 2017. Funding was provided by the NERC grant NE/L005409/1.

  • UK Met Office UM (Unified Model) output for Larsen Ice Shelf, run at 4km resolution. Modelling was carried out to support the Orographic Flows and the Climate of the Antarctic Peninsula (OFCAP) project during the 2010-2011 field season.